期刊文献+

应用深度学习实现儿科临床疾病智能辅助诊断 被引量:5

Realize the Intelligent Auxiliary Diagnosis of Pediatric Clinical Disease with the Application of Deep Learning
下载PDF
导出
摘要 目的:通过对儿科门急诊电子病历的深度学习,研发临床智能辅助诊疗,探讨儿科临床辅助诊疗的可行性。方法:应用循环神经网络(RNN)的深度学习方法对儿科门诊电子病历进行模型训练,通过建立儿科的主数据,推导病人可能的诊断。建立深度学习模型,在儿科专科门诊60万份电子病历及8万份住院病历基础上,根据病历质量筛选出儿科门诊常见的242种疾病,进行模型训练。结果:top-1准确率达到了76.436%(即模型判断中最有可能的诊断和医生的诊断符合),top-3准确率达到92.388%(即模型判断中最有可能的前三个诊断中有一个和医生的诊断符合),top-5准确率达到了95.261%。结论:应用规范化的电子病历实现儿科人工智能辅助诊疗是可行的,并可通过辅助决策分析帮助基层临床儿科医生规范临床诊疗行为。 Objective: Implement Clinical Decision Support System (CDSS) by using deep learning model with outpatient clinical records in pediatrics to prove the feasibility. Methods: Train a Recurrent Neural Network (RNN) model to tagging medical entities; Setup tree-based master data to standardize the information extracted; Train a deep learning model with ultra-high dimension vector as input to make diagnosis, which can cover 242 common diseases. Results: Accuracy is used as evaluation metric, and top1 accuracy is 76.436%, top3 accuracy is 92.388%, top5 accuracy is 95.261%. Conclusion: It is feasible to use deep learning model in CDSS with standardized medical events, and this solution can be introduced into community hospitals where pediatricians are in great deficiency.
作者 吴谨准 罗震 徐盛 苏潘琛 袁文 李友星 陈坚 赵敏 许中 WU Jin-zhun; LUO Zhen; XU Sheng
出处 《中国数字医学》 2018年第10期14-16,共3页 China Digital Medicine
基金 2015年厦门市发改委国家现代服务业综合试点项目-基于大数据的儿科智能公共服务平台建设~~
关键词 深度学习 临床诊断 儿科门诊 电子病历 deep learning clinical diagnosis pediatric clinic electronic medical record
  • 相关文献

参考文献2

二级参考文献24

  • 1张国荣,钟初雷,黎海源.电子病历系统的建立及临床信息整合[J].中华医院管理杂志,2005,21(12):835-837. 被引量:62
  • 2Cimino JJ,Li J.Sharing intbbuttom to resolve clinicians'information needs.AMIA A1mu Syrup Proc,2003:815.
  • 3HL7 resources.http://www.hl7.org.
  • 4Web Services After Five Years: Panel Discussion Proposal[EB/OLl.http://www commerce.net.
  • 5Post A R, Kurc T, Cholleti S, et al. The Analytic Informa- tion Warehouse (AIW) : a platform for analytics using elec- tronic health record data [J ]. Journal of Biomedical Infor- matics, 2013, 46 (3) : 410 - 424.
  • 6Alagiakrishnan K, Wilson P, Sadowski C A, et al. Physi- cians' Use of Computerized Clinical Decision Supports to Im- prove Medication Management in the Elderly -the Seniors Medication Alert and Review Technology intervention [ J ]. Clinical Interventions in Aging, 2016, (11) : 73.
  • 7IBM. IBM Watson for Oncology [ EB/OL]. [2015 - 8 - 15 ]. http : //www. ibm. com/smarterplanet/us/en/ibmwat- son/watson - oncology, html.
  • 8Paneth -Pollak R, Schillinger J A, Borrelli J M, et al. U-sing STD Electronic Medical Record Data to Drive Public Health Program Decisions in New York City [ J]. American Journal of Public Health, 2010, 100 (4) : 586 -590.
  • 9Wei W Q, Denny J C. Extracting Research - Quality Pheno- types from Electronic Health Records to Support Precision Medicine [J]. GenomeMed, 2015, 7 (1): 41.
  • 10Tate A R, Beloff N, Al - Radwan B, et al. Exploiting the Potential of Large Databases of Electronic Health Records for Research Using Rapid Search Algorithms and an Intuitive Query Interface [J ]. Journal of the American Medical In- formatics Association, 2014, 21 (2) : 292 -298.

共引文献10

同被引文献36

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部