期刊文献+

一类具有抛物边界的对流扩散方程的耦合解法

Coupling Method of a Class of Convective Diffusion Equations with Parabolic Boundary
下载PDF
导出
摘要 研究一类具有抛物边界的对流扩散方程的局部间断有限元和连续有限元的耦合方法﹒数值实验验证了Shishkin网格下采用双线性元,可以达到关联范数下的一致收敛阶O(lnN/N),数值实验也表明L^2范数下该方法可达到一致收敛阶O((lnN/N)^(3/2)) A coupled approach of local discontinuous Galerkin(LDG) and continuous finite element method(CFEM) is considered for two-dimensional convection-diffusion problems with regular parabolic layers. Numerical experiments show that the uniform convergence rate O(lnN/N) in the associated norm is established when the bilinear element under the Shishkin mesh is used. Moreover, it is observed numerically that the uniform convergence rate O((lnN/N)^(3/2)) in L^2 norm can be reached and the CFEM-LDG coupled method is slightly superior to the NIPG method and the CFEM-NIPG coupled method.
作者 李又良 文爱英 LI Youliang;WEN Aiying(College of Science,Hunan City University,Yiyang,Hunan 413000,China;Changsha Foreign Languages School,Changsha,Hunan 410004,China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2018年第5期47-50,共4页 Journal of Hunan City University:Natural Science
基金 湖南省自然科学基金项目(2016JJ4016) 湖南省教育厅科研项目(17B049) 湖南省普通高等学校教学改革研究项目(湘教通[2016]400号)
关键词 对流扩散方程 抛物层 耦合法 SHISHKIN网格 convection-diffusion equation coupled approach parabolic layers Shishkin mesh
  • 相关文献

参考文献3

二级参考文献17

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部