期刊文献+

基于哈希算法及生成对抗网络的图像检索 被引量:4

Image Retrieval Based on Hash Method and Generative Adversarial Networks
原文传递
导出
摘要 哈希方法是大规模图像检索中生成哈希码的有效方法。现有的哈希方法首先提取描述图像整体的特征,然后生成哈希码,但得到的哈希码并不精确。为了得到更精确的检索效果,提出一种新的检索方法,即采用卷积神经网络提取图像特征,利用哈希算法与输入二进制噪声变量的生成对抗网络共同学习图像的二进制哈希码,利用汉明距离对图像进行相似性比较,最后完成对图像数据的有效检索。在标准图像数据集上进行实验,结果证明,该方法可以有效地进行图像检索,相比现有的哈希方法,该方法的检索性能也得到了提升。 Hash method is an effective method for generating hash codes in large-scale image retrieval. The current hash method extracts the characteristics of the whole image first and then generates hash code, but the obtained hash code is not very precise to obtain more precise retrieval effect. Aiming at this problem, we propose a new method. First, we use a convolutional neural network to extract image features. Then, we adopt hash algorithm and generative adversarial network of input binary noise variable to learn image binary hash code, and carry out image similarity comparison by using hamming distance. Finally, we complete the effective retrieval of image data. Experiments on standard image data sets show that this method can effectively perform image retrieval, and the retrieval performance is improved than other methods.
作者 彭晏飞 武宏 訾玲玲 Peng Yanfei, Wu Hong, Zi Lingling(School of 19teetronic and Information Engineering, Liaoning Technical University Huludao, Liaoning 125105, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第10期98-104,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61702241) 辽宁省教育厅高等学校基本科研项目(LJ2017FBL004) 辽宁省教育厅科学研究一般项目(L2015225) 辽宁省博士科研启动基金(201601365)
关键词 图像处理 图像检索 卷积神经网络 哈希算法 生成对抗网络 image processing image retrieval convolution neural network hash method generative adversarial network
  • 相关文献

参考文献7

二级参考文献148

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2Mayer-Sch?nberger V, Cukier K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Eamon Dolan/Houghton Mifflin Harcourt, 2013.
  • 3Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research, 2009.
  • 4Bryant R E. Data-intensive scalable computing for scientific applications. Comput Sci Engin, 2011, 13: 25-33.
  • 5周志华. 机器学习与数据挖掘. 中国计算机学会通讯, 2007, 3: 35-44.
  • 6Zhou Z H, Chawla N V, Jin Y, et al. Big data opportunities and challenges: Discussions from data analytics perspectives. IEEE Comput Intell Mag, 2014, 9: 62-74.
  • 7Jordan M. Message from the president: The era of big data. ISBA Bull, 2011, 18: 1-3.
  • 8Kleiner A, Talwalkar A, Sarkar P, et al. The big data bootstrap. In: Proceedings of the 29th International Conference on Machine Learning (ICML), Edinburgh, 2012, 1759-1766.
  • 9Shalev-Shwartz S, Zhang T. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, 2014, 64-72.
  • 10Gonzalez J E, Low Y, Gu H, et al. PowerGraph: Distributed graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Hollywood, 2012, 17-30.

共引文献167

同被引文献31

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部