期刊文献+

用于定位激发平面的混合高斯方法

Location Method of Excitation Planes Based on Gaussian Mixture Distribution
原文传递
导出
摘要 荧光分子断层成像是一种高稳定性、低副作用的分子影像技术,一直是生物光学领域的研究热点,当激发平面位置与荧光目标位置接近时,光源的重建结果会更好;为了确定激发平面的位置,提出了一种混合高斯方法,该方法首先使用少量激发光源来获得发射光的生物体外表面分布,再使用带剪枝策略的混合高斯模型对该分布进行拟合,最后利用拟合后的峰值自动确定激发平面的个数和位置;基于新激发平面的激发光源可以获得荧光分子断层成像逆问题,进而利用该逆问题对荧光目标进行重建。实验结果表明:基于重新定位的激发平面的荧光分子断层成像光源重建结果在定位精度上显著优于原始激发平面对应的重建结果。 Fluorescence molecular tomography is a robust molecular imaging technology with low side effects which is a very hot topic in photobiology always. The fluorescence molecular tomography has better reconstruction results generally, if the excitation plane is close to the fluorescent targets. To find better excitation planes, we propose a location method of excitation planes based on mixture Gaussian distribution. Firstly, the method uses several excitation sources to obtain the living organism external surface distribution of the emitting light. Secondly, the Gaussian mixture model with pruning strategy is used to fit the distribution. Finally, the number and locations of the excitation planes are automatically determined according to fitted peak values. Fluorescence molecular tomography inverse problems are built based on the excitation light source of new excitation planes, and fluorescent targets are reconstructed using the inverse problems. Experimental results demonstrate that the fluorescence molecular tomograpby reconstruction results depending on the new excitation planes are much better than the results depending on original excitation planes.
作者 王晓东 耿国华 易黄建 何雪磊 贺小伟 Wang Xiaodong, Geng Guohua, Yi Huangjian, He Xuelei, He Xiaowei(School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第10期261-269,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61731015 61673319 11571012 61640418) 陕西省国际合作项目(2013KW04-04)
关键词 生物光学 激发平面定位 高斯混合分布 荧光分子断层成像 biotechnology excitation plane location Gaussian mixture distribution fluorescence molecular tomography
  • 相关文献

参考文献6

二级参考文献66

  • 1Dame C, Lu Y, Sevick-Muraca E M. Small animal fluorescence and bioluminescence tomography: A review of approaches, algorithms and technology update[J]. Physics in Medicine and Biology, 2014, 59(1): R1.
  • 2Qin C, Feng J, Zhu S, et al.. Recent advances in bioluminescence tomography: Methodology and system as well as application[J]. Laser & Photonics Reviews, 2014, 8(1): 94-114.
  • 3Wang G, Cong W, Durairaj K, et al.. In vivo mouse studies with bioluminescence tomography[J]. Optics Express, 2006 14(17): 7801-7809.
  • 4Cong W, Wang G. Iterative method for bioluminescence tomography based on the radiative transport equation[C] SPIE, 2006, 6318: 631826.
  • 5Lv Y, Tian J, Cong W, et al.. A multilevel adaptive finite element algorithm for bioluminescence tomography[J]. Optics Express, 2006, 14(18): 8211-8223.
  • 6Jiang M, Zhou T, Cheng J, et al.. Image reconstruction for bioluminescence tomography from partial measurement[J]. Optics Express, 2007, 15(18): 11095-11116.
  • 7Chaudhari A J, Darvas F, Bading J R, et al.. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging[J]. Physics in Medicine and Biology, 2005, 50(23): 5421-5441.
  • 8Ntziachristos V, Ripoll J, Wang L V, et al.. Looking and listening to light: The evolution of whole-body photonic imaging[J]. Nature Biotechnology, 2005, 23(3): 313-320.
  • 9Tikhonov A N, Arsenin V Y. Methods for solving ill-posed problems[J]. Mathematics of Computation, 1979, 32(144): 1320- 1322.
  • 10Gao H, Zhao H. Multilevel bioluminescence tomography based on radiative transfer equation Part regularization[J]. Optics Express, 2010, 18(3): 1854-1871.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部