期刊文献+

基于量子反馈保护量子比特的相干性 被引量:3

Protection of Quantum Coherence of Qubit Based on Quantum Feedback
原文传递
导出
摘要 通过采用直接的量子反馈方法控制量子比特的量子相干性,研究了与单模腔相互作用的量子比特的量子相干性的动力学演化。利用l_1范数相干性和量子相对熵相干性描述量子系统的相干性,分析了量子反馈和外部驱动对系统相干性演化的影响。研究结果表明,两种相干性表现出相同的动力学特性,量子反馈减慢了量子相干性的衰减,在一定程度上保护了量子相干性。若考虑外部驱动,在强驱动下,长时极限的稳态的量子相干性为零,而在非强驱动下相干性达到一个不变的最大值。 Based on the direct quantum feedback method for controlling the quantum coherence of a qubit, the dynamical evolution of the quantum coherence of a qubit which interacts with a single mode cavity is investigated. By using the l1 norm of coherence and the relative entropy of coherence to quantify the quantum coherence, the effects of the quantum feedback and the external driving on the evolution of the quantum coherence are analyzed. The research results show that, the dynamical characteristics of these two types of coherences are the same. The quantum feedback slows the decay of the quantum coherence and plays a certain protective role. When the external driving is considered, the coherence of the steady state in the long limit becomes zero under the strong-driving condition, while the quantum coherence reaches a stable maximum value under the non-strong-driving condition.
作者 王国友 郭有能 Wang Guoyou1, Guo Youneng2(1 School of Science, Hunan University of Technology, Zhuzhou, Hunan 41200?, China ; 2Department of Electronic and Communication Engineering, Changsha University, Changsha, Hunan 410022, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第10期335-340,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11275064) 湖南省自然科学基金(2016JJ2045) 湖南省教育厅科研项目(16C0469)
关键词 量子光学 量子反馈 量子相干性 l_(1)范数相干性 量子相对熵相干性 quantum optics quantum feedback quantum coherence l_(1)norm of coherence quantum relative entropy of coherence
  • 相关文献

参考文献4

二级参考文献37

  • 1彭堃墀.压缩态纠缠与连续变量纠缠交换[J].激光与光电子学进展,2005,42(12):7-8. 被引量:7
  • 2Bennett C H, Brassard G, Crt6peau C, et al.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Left, 1993, 70(13): 1895-1899.
  • 3Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys Rev Lett, 1992, 69(20): 2881-2884.
  • 4Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67(6): 661-663.
  • 5Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000.
  • 6Hagley E, Matre X, Nogues G, et al.. Generation of einstein-podolsky-rosen pairs of atoms[J]. Phys Rev Lett, 1997, 79(1): 1-5.
  • 7Steffen M, Ansmann M, Radoslaw C, et al.. Measurement of the entanglement of two superconducting qubits via state tomography[J]. Science, 2006, 313(5792): 1423-1425.
  • 8Bose S, Fuentes-Guridi I, Knight P L, et al.. Subsystem purity as an enforcer of entanglement[J]. Phys Rev Lett, 2001, 87(5): 050401.
  • 9Raimond J M, Brune M, Haroche S. Colloquium: manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys, 2001,73(3): 565-582.
  • 10Kim M S, Lee J Y, Ahn D, et al.. Entanglement induced by a single-mode heat environment[J]. Phys Rev A, 2002, 65(4): 040101.

共引文献14

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部