摘要
经济调度问题是电力系统领域的典型优化问题,在电力系统运行和控制中起着重要作用,该问题实现对电力系统运行经济性的优化,能够使系统获得巨大的经济效益,因此具有极大的实际应用价值。粒子群算法是一类新的基于群体智能的启发式全局优化技术,具有简单、容易实现、参数设置少、收敛速度快等特点,在优化领域被广泛应用。首先对粒子群算法的基本概念及内容进行了基本介绍,其次引入惯性权重的概念对改进粒子群算法领域内较为常用的自适应惯性权重粒子群算法进行研究与总结,并阐述经济调度问题的相关内容与解决方法,最后选取传统粒子群算法与改进后的粒子群算法进行仿真并分析比较数据结果,从而证实了算法的有效性。
In this paper,firstly,the basic concept and content of the particle swarm algorithm is introduced.Secondly by in- troducing the concept of inertia weight,particle swarm algorithm based on adaptive inertia weight is put forward.The eco- nomic dispatch problem as well as its solving method is also discussed in detail.Finally the traditional particle swarm algo- rithm and the improved one with adaptive inertia weight is selected to go through the simulation process and the results of these methods are compared and analyzed,which proves the validity of the algorithm.
出处
《工业控制计算机》
2018年第11期83-84,共2页
Industrial Control Computer
关键词
电力系统
经济调度
粒子群算法
power system
economic dispatch
particle swarm optimization