期刊文献+

零散点停车位智能管理系统中的车牌图像超分辨率重建技术研究

Research on the Super Resolution Reconstruction Technology of License Plate Image in Intelligent Management System of Scattered Point Parking Place
下载PDF
导出
摘要 针对车位管理系统监控视频下车牌图像会出现低分辨率问题,为了提高车牌图像分辨率,改进一种超分辨率重建算法。首先利用图像序列之间的关联性,使用块匹配进行运动估计,筛选出合适的帧序列,利用MAP法将筛选出的图像序列重建出合适的中分辨率图像。最后将中分辨率图像结合经过MOD算法训练出的超完备字典,利用稀疏表示的方法,重建为HR图像。实验结果表明,该方法合理利用车牌图像间的关联性和先验信息,提高重建出的高分辨率车牌图像质量。 In order to improve the resolution of license plate image, proposes a super-resolution reconstruction algorithm. Firstly, uses the correlation between image sequences, uses the block matching to estimate the motion, and selects the appropriate frame sequences. Then the filtered image sequences are reconstructed into appropriate moderate resolution images by MAP method. Finally, the moderate resolution image is combined with the super-complete dictionary trained by MOD algorithm, reconstructs the HR image by sparse representation. Experimental results show that the proposed method makes full use of the correlation and prior information between license plate images and improves the quality of the reconstructed high-resolution license plate images.
作者 孙文 SUN Wen(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001)
出处 《现代计算机》 2018年第21期21-24,28,共5页 Modern Computer
基金 安徽省大学生创新创业训练计划项目(No.201710361227)
关键词 稀疏表示 MAP法 先验信息 超分辨率重建 图像序列 Sparse Representation MAP Method Prior Information Super-Resolution Reconstruction Image Sequence
  • 相关文献

参考文献1

二级参考文献20

  • 1E. Lee and M. G. Kang," Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration, "IEEE Transactions on Image Processing, vol.12, pp. 826-837,2003.
  • 2A. Zomet, A. Rav-Acha, and S. Peleg," Robust super-resolution," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, A. Rav-Acha, Ed. ,2001, pp. 645-650.
  • 3S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar," Fast and robust multiframe super resolution," IEEE Transactions on Image Processing, vol. 13, pp. 1327-1344,2004.
  • 4A. C. Yau, N. K. Bose, and M. K. Ng," An efficient algorithm for superresolution in medium field imaging," Multidimensional Systems and Signal Processing, vol. 18, pp. 173-188,2007.
  • 5M. Elad and Y. Hel-Or," A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariaut blur," IEEE Transactions on Image Processing, vol. 10, pp. 1187-1193,2001.
  • 6S. Baker and I. Matthews," Lucas-Kanade 20 Years On: A Unifying Framework," International Journal of Computer Vision, vol. 56, pp. 221-255,2004.
  • 7S. Farsiu, D. Robinson, and P. Milanfar," MDSP resolution enhancement software," Available : http ://www. soe. ucsc. edu/-milanfar/SR-Software.htm,2004.
  • 8W. Y. Zhao and S. Sawhney, "Is super-resolution with optical flow feasible?," in Proc. Euro. Conf. Computer Vision (ECCV02), vol. 2350 : Springer-Verlag, 2002, pp. 599- 613.
  • 9Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli," Image quality assessment:from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13 ,pp. 600-612,2004.
  • 10Z. Wang, W. Guixing, H. R. Sheikh, E. P. SimonceUi, Y. En-Hui, and A. C. Bovik," Quality-aware images," IEEE Transactions on Image Processing, vol. 15, pp. 1680-1659, 2006.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部