期刊文献+

社交网络大数据下的推荐算法研究 被引量:1

下载PDF
导出
摘要 推荐算法在各个领域应用广泛。大数据环境下,社交网络数据繁杂,其推荐算法面临着新的挑战。本工作在整理总结推荐算法的基础上,详细分析了大数据环境以及社交网络对推荐算法的新要求,并结合当前研究现状,提出了关于社交网络大数据下推荐算法的发展方向的一些看法。
作者 李其隆
机构地区 天津市第四中学
出处 《通讯世界》 2018年第11期27-28,共2页 Telecom World
  • 相关文献

参考文献4

二级参考文献111

  • 1张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193
  • 2Labrinidis A, Jagadish H V. Challenges and opportuni- ties with big data[ J]. Proceedings of the VLDB Endow- ment, 2012, 5(12): 2032-2033.
  • 3Ye Tao, Bickson D, Yan Qiang. Second workshop on large-scale recommender systems: research and best prac- tice [ C ] //J 8'h ACM Conference on Recommender Sys- tems, 2014 ACM. Silicon Valley: ACM Press, 2014: 385 -386.
  • 4Hong Jongyi, Suh E H, Kim J, et al. Contextaware sys- tem for proactive personalized service based on context history [J]. Expert Systems with Applications, 2009, 36 (4) : 7448-7457.
  • 5Pessemier T D, Deryckere T, Martens L. Extending the Bayesian classifier to a context-aware recommender system for mobile devices [ C ]//Internet and Web Applications and Services (ICIW), 2010 Fifth International Confer- ence on IEEE. Barcelona, Spain: IEEE Press, 2010: 242-247.
  • 6Shahabi C, Chen Yishin. An adaptive recommendation system without explicit acquisition of user relevanee feed- back [J]. Distributed and Parallel Databases, 2003, 14 (2) : 173-192.
  • 7Yang Diyi, Chen Tianqi, Zhang Weinan, et al. Local implicit feedback mining for music recommendation [ C 1// the 6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 91-98.
  • 8Rafailidis D, Nanopoulos A. Modeling the dynamics of user preferences in coupled tensor factorization [ C ] // the 8'h ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 321- 324.
  • 9Oh K J, Lee W J, Lim C G, et al. Personalized news recommendation using classified keywords to capture user preference [ C ] //16th Advanced Communication Technology (ICACT) , 2014 International Conference on IEEE. South Korea: IEEE Press, 2014: 1283-1287.
  • 10Taktics G, Piltiszy I, N6meth B, et al. Scalable collabo- rative filtering approaches for large recommender systems [ J]. The Journal of Machine Learning Research, 2009, 10(12) : 623-656.

共引文献136

同被引文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部