期刊文献+

一种电影推荐模型:解决冷启动问题 被引量:2

A Movie Recommendation Model: Solving Cold Start Problem
下载PDF
导出
摘要 推荐系统数据库的评分数据稀少,对电影推荐的质量有所限制。为解决这个问题,提出一种同时将用户和电影元数据纳入改进的隐语义模型的模型。构造用户元数据-分类矩阵与电影元数据-分类矩阵,将分类域与隐因子空间进行映射,以此获取新用户与新电影的隐因子,进行推荐。实验结果表明,这种模型在提高预测准确率的同时,有效地解决了冷启动问题。 The rating data of the recommended system database is scarce, and the quality of the movie recommendation is limited. To solve this problem, a model that simultaneously incorporates user and movie metadata into an improved implicit semantic model is proposed. The user metadata-classification matrix and movie metadata-classification matrix are constructed, and the classification domain and the implicit factor space are mapped to obtain the hidden factors of the new user and the new movie, and a recommendation is made. The experimental results show that this model can effectively solve the cold start problem while improving the accuracy of prediction.
作者 刘春霞 陆建波 武玲梅 LIU Chun-xia;LU Jian-bo;WU Ling-mei(College of Computer & Information Engineering,Guangxi Teachers Education University,Nanning 530299,China)
出处 《计算机与现代化》 2018年第11期83-87,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(61672177)
关键词 推荐系统 冷启动 元数据 隐语义模型 电影推荐 recommender system cold start metadata latent semantic model movie recommendation
  • 相关文献

参考文献8

二级参考文献171

  • 1吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 2李双双,陈毅文,李江予.消费者网上购物决策模型分析[J].心理科学进展,2006,14(2):294-299. 被引量:34
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4Deshpande M, Karypis G. Item-Based top-N recommendation algorithms. ACM Trans. on Information Systems, 2004,22(1): 143-177. [doi: 10.1145/963770.963776].
  • 5Park ST, Chu W. Pairwise preference regression for cold-start recommendation. In: Proc. of the 3rd ACM Conf. on Recommender Systems. ACM Press, 2009.21-28. [doi: 10.1145/1639714.1639720].
  • 6Zhang ZK, Liu C, Zhang YC, Zhou T. Solving the cold-start problem in recommender systems with social tags. EPL (Europhysics Letters), 2010,92(2):28002. [doi: 10.1209/0295-5075/92/28002].
  • 7Zhang ZK, Zhou T, Zhang YC. Tag-Aware recommender systems: A state-of-the-art survey. Journal of Computer Science and Technology, 2011,26(5):767-777. [doi: 10.1007/s 11390-011-0176-1 ].
  • 8Marinho LB, Nanopoulos A, Thiemel S. Social tagging recommender systems. In: Ricci F, Rokach L, Shapira B, ed. Recommender Systems Handbook. New York: Springer-Verlag, 2011. 615-644. [doi: 10.1007/978-0-387-85820-3_19].
  • 9Mistry O, Sen S. Tag recommendation for social bookmarking: Probabilistie approaches. Multiagent and Grid Systems, 2012,8(2): 143-163. Idol: 10.3233/MGS-2012-0190].
  • 10Jomsri P, Sanguansintukul S, Choochaiwattana W. A framework for tag-based research paper recommender system: An IR approach. In: Proc. of the 2010 IEEE 24th Int'l Conf. on Advanced Information Networking and Applications Workshops. 2010. 103-108. [doi: 10.1109/WAINA.2010.35].

共引文献805

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部