摘要
本文以单柔性机械臂为例,利用拉格朗日方程和Rayleigh-Ritz方法进行简单的逆运动学分析,分别采用近似法和RBF神经网络方法对模型进行了数值仿真分析。通过分析可以看出,相较于近似方法,利用RBF神经网络方法得到的轨迹更接近实际轨迹,为后续解决柔性杆件运动过程中的控制问题提供了较好的解决办法。
Taking a single flexible manipulator as an example,Lagrange and Rayleigh Ritz method were used for a simple analysis of the inverse kinematics,and approximation method and RBF neural network were used respectively to analyze in numerical simulation. It can be seen that the trajectory obtained by RBF neural network method is closer to the actual trajectory than the approximate method. It provides a better solution for the control of flexible rod during motion.
作者
郎英彤
辛原野
LANG Ying-tong;XIN Yuan-ye(The City College of Jilin Jianzhu University,Changehun Jilin 130118,China)
出处
《长春师范大学学报》
2018年第10期16-20,共5页
Journal of Changchun Normal University
基金
吉林省教育厅"十三五"科学技术研究项目"柔性机械臂的智能控制及优化研究"(吉教科合字[2016]第524号)
关键词
柔性机械臂
逆动力学
近似方法
RBF神经网络
数值仿真
flexible manipulator
inverse dynamies
approximation
RBF neural network
numerical simulation