期刊文献+

硝酸钙辅助生物膜法用于污染河道原位修复 被引量:3

In Situ Remediation of Polluted River Using Combination of Calcium Nitrate and Biofilm Carrier
原文传递
导出
摘要 硝酸钙原位修复技术可有效抑制底泥黑臭现象,但也存在引发上覆水体有机物和TN浓度升高的可能。为此,在投加硝酸钙削减底泥污染物的同时,利用生物膜法控制底泥污染物的释放对上覆水体的影响。结果表明,联合修复的效果优于硝酸钙单独处理效果。在投加适量的生物填料条件下,上覆水体总磷的去除率为83. 9%,氨氮的去除率可达84. 8%,有机物的去除率为49. 0%,底泥酸挥发性硫化物(AVS)的去除率达92. 7%。联合修复对水体总氮浓度的控制也有积极的效果,相比单独投加硝酸钙,上覆水体总氮的含量降低了50. 0%。另外,生物填料密度对污染河道上覆水体修复效果有明显的影响。 Calcium nitrate in situ bioremediation technology can effectively inhibit the black and odor of sediment, but it may also cause the increase of organic matter and total nitrogen content in overlying water. Addition of calcium nitrate combined with biofilm carrier was applied to control the release of pollutants from sediments. The results showed that the remediation effect of combined process was better than that of dosing calcium nitrate alone. Under the condition of adding appropriate amount of carriers, the removal rates of total phosphorus, ammonia nitrogen and organic matter in the overlying water were 83.9%, 84. 8% and 49. 0%, respectively. The removal rate of acid volatile sulfide (AVS) was 92.7%. Compared with the blank group, the TN concentration was decreased by 50.0%. In addition, the density of biofilm carrier had a significant effect on the sediments remediation. The suitable density of biofilm carrier can be applied in the engineering.
作者 马君妍 吴比 朱南文 袁海平 MA Jun-yan;WU BiI;ZHU Nan-wen;YUAN Hai-ping(School of Environmental Science and Engineering,Shanghai Jiaotong University,Shanghai 200240,China;Shanghai Institute for Pollution Control and Ecological Safety,Shanghai 200092,China)
出处 《中国给水排水》 CAS CSCD 北大核心 2018年第21期31-36,共6页 China Water & Wastewater
基金 国家重点研发计划项目(2016YFC0401500 2016YFC0401507) 上海市科委课题(16DZ1204802)
关键词 污染河道 原位生物修复 生物刺激 酸挥发性硫化物 生物膜 硝酸钙 polluted river in situ bioremediation biostimulation acid volatile sulfide biofilm calcium nitrate
  • 相关文献

参考文献1

二级参考文献32

  • 1Abrams M M, Jarrell W M, 1995. Soil phosphorus as a potential non-point source for elevated stream phosphorus levels. Journal of Environmental Quality, 24(1): 132-138.
  • 2APHA, AWWA, WEF (American Public Health Association, American Water Works Association, Water Environment Federation), 1995. Standard methods for the examination of water and wastewater. 19th ed. Washington, DC: American Public Health Association.
  • 3Balchand A, Nair S, 1994. Fractionation of phosphorus in the sediments of a tropical estuary. Environmental Geology, 23(4): 284-294.
  • 4Barbanti A, Sighinolfi G, 1988. Sequential extraction of phosphorus and heavy metals from sediments methodological consideration. Environmental Technology Letter, 9(2): 127- 134.
  • 5Dahl M, Dunning C P, Green T, 1993. Convective-transport of chemicals across a sediment-water interface. Water Science Technology, 28(3): 209-213.
  • 6Dorich R, Nelson D, Sommers L, 1985. Estimating phosphorus in suspended sediments by chemical extraction. Journal of Environmental Quality, 14(3): 400--405.
  • 7Furumai H, Kondo T, Ohgaki S, 1989. Phosphorus exchange kinetics and exchangeable phosphorus forms in sediments. Water Research, 23: 685-691.
  • 8Fytianos A, Kotzakioti A, 2005. Sequential fracfionation of phosphorus in lake sediments of north Greece. Environmental Monitoring and Assessment, 100(1-3): 191-200.
  • 9Gonsiorezyk T,-Casper P, Koschel R, 1998. Phosphorus binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 37(3): 51-58.
  • 10House W A, Denison F H, 2002. Total phosphorus content of rivers sediments in relationship to calcium, iron and organic matter concentrations. Science of the Total Environment, 282/283(1): 341-351.

共引文献53

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部