摘要
利用直接的积分估计,研究非线性复微分方程(f^(k))^(n_k)+A_(k-1)(z)(f^(k-1))^(n_(k-1))+…+A_1(z)(f′)^(n_1)+A_0(z)f=Ak(z)解的函数空间属性,刻画了方程的解析解,以及它们的导数属于H∞ω空间时系数需要满足的条件.改善及推广了已有的相关结果.
Based on the straightforward integral estimate,the properties of function spaces of solutions of the nonlinear differential equation (f^k)^nk+Ak-1(z)(f^k-1)^nk-1)+…+A1(z)(f')^n1+A0(z)f=Ak(z) are studied.The sufficient conditions of the coefficients for the derivatives and analytic solutions of the above equation to be in Hω^∞ are given in this paper,which improves and extends previous results from Huusko-Korhonen-Reijonen.
作者
孙煜
龙见仁
覃智高
胡光明
SUN Yu;LONG Jian-ren;QIN Zhi-gao;HU Ouang-ming(School of Mathematical Sciences,Guizhou Normal University,Guiyang 550001,China;School of Mathematics and Systems Science,Beihang University,Beijing 100191,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第10期83-88,共6页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11501142
11861023)
贵州省科学技术基金项目(黔科合J字[2015]2112号)
关键词
非线性复微分方程
HARDY空间
解析解
单位圆
nonlinear complex differential equation
Hardy space
analytic solution
unit disc