摘要
该文在分析由常规窄带雷达获得的直升机、螺旋桨和喷气式飞机实测回波数据特征的基础上,提出一种基于多特征联合的分类识别算法。通过对大量实测回波数据的特征分析,提取多普勒频移、幅度相对量、时域和频域波形熵、时频特征多个具有明显区分性的特征,将其输入支撑向量机(SVM)分类器实现3类空中目标的分类。在分类的基础上,基于回波数据的时频谱宽和对称性特征,提出一种奇数与偶数片桨叶直升机识别方法。最后实测数据的处理结果验证了所提空中目标分类识别方法的有效性。
After analyzing the features of three measured data from the low-resolution radar system, corresponding to the helicopter, the propeller, and the turbojet, an algorithm is proposed by using multiple features to classify and recognize the aircraft targets. First, multiple features are extracted, including Doppler frequency shift, relative magnitude, waveform entropy of time and frequency domain, and time-frequency domain features from the measured data. Then, these features are utilized for classification purpose by means of tile Support Vector Machine (SVM). Finally, owing to the symmetry and the width of time-frequency distributions of the returned signals between the helicopters with odd and even blades, a method is proposed to recognize of helicopter. The experimental results of measured data verify the effectivity of the proposed algorithms.
作者
李明
吴娇娇
左磊
宋万杰
刘慧敏
LI Ming ,WU Jiaojiao ,ZUO Lei,SONG Wanjie, LIU Huimin(National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China); (Collaborative Innovation Center of Radar at Xidian University, Xi'an 710071, China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2018年第11期2606-2613,共8页
Journal of Electronics & Information Technology
基金
国防预研基金(61424010302162401002)
国家自然科学基金(61501342)
陕西省自然科学基金(2017JM6019)~~
关键词
目标分类
特征提取
时频分析
直升机识别
Target classification
Feature extraction
Time-frequency signatures
Helicopter recognition