摘要
采用温度采集装置测定了Mg-8Gd-1Er(GE81)合金在石墨型炉冷、石墨型空冷、铁型空冷、铜型空冷4种不同冷却方式下的平均冷却速度,并基于经典形核理论分析了晶粒密度与冷却速度的关系;利用金相显微镜和扫描电镜观察了不同冷却速度下合金的铸态显微组织,分析了晶粒密度、第二相体积分数及硬度与冷却速度的关系。结果表明,合金在不同冷却方式下的平均冷却速度分别为0.23,0.46,2.17和3.88 K·s^(-1),过冷度与冷却速度为线性关系:?T=13.5664v+6.9655;随冷却速度增加,晶粒明显细化,晶粒密度与冷却速度的关系为:Nv=1.1135×10^(12)exp(–46.8344/(13.5664v+6.9655));此外,随冷却速度增加,第二相体积分数减小,分布更加细小均匀,合金硬度明显增大,硬度与冷却速度的关系为:HV=72.1772–12.6895/(1+exp(v–2.2570))。
A temperature acquisition system was used to measure average solidification cooling rate of GE81 alloys under different cooling conditions,including furnace-cooling in graphite mold,air-cooling in graphite mold,air-cooling in steel mold and air-cooling in copper mold.The relationship between cooling rate and grain density was studied based on classical nucleation theory.Optical microscope(OM)and scanning electron microscope(SEM)were used to observe the microstructure of as-cast GE81 alloys(Mg-8Gd-1Er,wt%)at various cooling rates in order to establish the relationship between solidification cooling rate,grain density,hardness and volume fraction of secondary phases.The results show that the solidification cooling rates of GE81 alloy in the four moulds are 0.23,0.46,2.17 and 3.88 K·s^-1,respectively.The cooling rate is linear with the undercooling,and the formula is?T=13.5664v+6.9655.With the increasing cooling rate,theα-Mg grains are refined obviously.The relationship between the cooling rate and the grain density can be described as Nv=1.1135×10^12exp(–46.8344/(13.5664v+6.9655)).Moreover,the secondary phase distribution is more homogeneous and their volume fraction decreases so that the hardness of the GE81 alloy increases significantly.The relationship between the hardness and the cooling rate can be expressed as HV=72.1772–12.6895/(1+exp(v–2.2570)).
作者
张月
杜文博
李淑波
刘轲
王朝辉
郑晓兵
Zhang Yue, Du Wenbo, Li Shubo, Liu Ke, Wang Zhaohui, Zheng Xiaobing(Beijing University of Technology, Beijing 100124, China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2018年第10期3120-3126,共7页
Rare Metal Materials and Engineering
基金
国家重点基础研究发展计划(2016YFB0301101-1)
国家自然科学基金(51401005)
北京市教委面上项目(KM201410005014)
北京市自然基金(2162003)