期刊文献+

基于栈式降噪自编码和词嵌入表示的维吾尔语零指代消解

Zero Pronoun Resolution of Uyghur Based on Stacked Denoising Autoencoder and Word Embedding
下载PDF
导出
摘要 针对维吾尔语零指代现象,提出采用栈式降噪自编码的深度学习机制进行维吾尔语零指代消解。首先由大规模无标注维吾尔语语料训练得到富含语义和句法信息的词嵌入表示,将其作为候选先行语和缺省零代词的语义特征;其次根据维吾尔语语言特点,抽取14项针对零指代消解任务的手工设计特征;然后融合word embedding特征和14项hand-crafted特征作为栈式降噪自编码的输入,最后经过无监督逐层贪婪的预训练和有监督的微调过程,使用softmax进行分类完成维吾尔语零指代消解任务。实验结果表明,与传统栈式自编码、浅层机器学习的支持向量机和人工神经网络相比,栈式降噪自编码的F值分别提高了4.450%、10.032%和8.140%,实验结果验证了该方法的有效性及栈式降噪自编码在任务中具备挖掘高层面鲁棒性语义特征的优势。 Adopting deep learning mechanism,this paper apply Stacked Denoising Autoencoder(SDAE)to deal with Uyghur zero pronoun anaphora phenomenon.Firstly,word embedding trained on large-scale unlabeled Uyghur corpus is used as semantic features of candidate antecedents and zero pronouns.Secondly,according to Uyghur characteristics,we extract 14 hand-crafted features for zero pronoun resolution.Experimental results show that,compared to SAE(Stacked Autoencoder),SVM and ANN,the F value of SDAE is increased by 4.450%,10.032% and 8.140%,respectively.
作者 秦越 禹龙 田生伟 冯冠军 吐尔根.依布拉音 艾斯卡尔.艾木都拉 赵建国 QIN Yue;YU Long;TIAN Shengwei;FENG Guanjun;Turgun Ibrahim;Askar Hamdulla;ZHAO Jianguo(School of Information Science and Engineering,Xinjiang University,Urumqi,Xingjiang 830046,China;Network Center,Xinjiang University,Urumqi,Xingiiang 830046,China;School of Software,Xinjiang University,Urumqi,Xingjiang 830008,China;School of Humanities,Xinjiang University,Urumqi,Xingjiang 830046,China)
出处 《中文信息学报》 CSCD 北大核心 2018年第5期56-64,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金(61563051 61662074 61262064 61331011) 新疆维吾尔自治区科技人才培养项目(QN2016YX0051)
关键词 维吾尔语 零指代消解 栈式降噪自编码 词嵌入表示 Uyghur zero pronoun resolution stacked denoising autoencoder word embedding
  • 相关文献

参考文献5

二级参考文献57

  • 1李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 2Vincent Ng. Semantic Class Induction and Coreference Resolution[C]//ACL' 2007. Prague, Czech Republic: June 2007, 536-543.
  • 3http ://svmlight. joachims, org/.
  • 4http ://MaxEnt. sf. net/.
  • 5McCarthy J. F., Lehnert W. Using Decision Trees for Coreference Resolution [C]//Proc. of the 14th International Joint Conference on Artificial Intelligence. Montreal, Canada.. Morgan Kaufmann:1995, 1050- 1055.
  • 6Soon W. M., Ng H. T. and Lim C. Y. A machine learning approach to coreference resolution of noun phrase [J]. Computational Linguistics, 2001, 27(4): 521-544.
  • 7Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolution [C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, Pennsylvania:2002, 104-111.
  • 8Yang X. F. , Zhou G. D. etc. Coreference Resolution Using Competition Learning Approach [C]//ACL ' 2003. Sapporo, Japan:7-12 July2003,176- 183.
  • 9Yang X. F., Su J. etc. Improving pronoun resolution by incorporating coreferential information of candidates [C]//ACL'2004. Barcelona, Spain:21-26 July 2004, 127-134.
  • 10Yang X. F., Su J. and Tan C. L. Improving Pronoun Resolution Using Statistics - Based Semantic Compati- bility Information[C]//ACL' 2005. Univ of Michgan- Ann Arbor, USA: 25-30 June 2005, 165-172.

共引文献688

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部