期刊文献+

Establishment and industrial practice of high-temperature process evaluation system in sintering 被引量:1

Establishment and industrial practice of high-temperature process evaluation system in sintering
原文传递
导出
摘要 The behaviors of typical iron ores at high temperature were observed by confocal scanning laser microscopy. Four critical temperature points and liquid flow velocity at high temperatures of iron ores were obtained and the temperature points contain temperature at which sample starts to shrink, temperature at which the initial liquid phase forms, temperature at which a lot of liquid forms and temperature at which liquid consolidation ends. Under the same CaO to Fe203 ratio, the liquid phase fluidity of iron ore fines of Carajas (IOC) is good. However, under the same basicity, as the content of SiO2 in IOC is low, the liquid phase fluidity of IOC is much smaller than that of Yandi fine. After analysis of the initial formation and development of the liquid phase and the final consolidation process, the high-temperature process evaluation system (HTPES for short) of iron ore was established. The idea of "dense ore matching fusible ore" instead of "relatively fusible ore" was proposed based on the results of HTPES and applied in ore matching of a sinter plant from Shougang Jingtang. The use of IOC (13-18%) instead of standard sintering fines (SSF) improved liquid phase fluidity and ensured the sinter quality. Furthermore, the use of IOC fine (18-23%) with Hainan fine (0-2%) instead of SSF, a mixture of hematite and Marra Mamba ore and concentrates guaranteed the quality of sinter ore through improving fluidity, in the meantime reducing ore matching costs. With the establishment and application of HTPES, the sinter plant has achieved good economic benefits under the premise of ensuring the quality of sinter ore. The behaviors of typical iron ores at high temperature were observed by confocal scanning laser microscopy. Four critical temperature points and liquid flow velocity at high temperatures of iron ores were obtained and the temperature points contain temperature at which sample starts to shrink, temperature at which the initial liquid phase forms, temperature at which a lot of liquid forms and temperature at which liquid consolidation ends. Under the same CaO to Fe203 ratio, the liquid phase fluidity of iron ore fines of Carajas (IOC) is good. However, under the same basicity, as the content of SiO2 in IOC is low, the liquid phase fluidity of IOC is much smaller than that of Yandi fine. After analysis of the initial formation and development of the liquid phase and the final consolidation process, the high-temperature process evaluation system (HTPES for short) of iron ore was established. The idea of "dense ore matching fusible ore" instead of "relatively fusible ore" was proposed based on the results of HTPES and applied in ore matching of a sinter plant from Shougang Jingtang. The use of IOC (13-18%) instead of standard sintering fines (SSF) improved liquid phase fluidity and ensured the sinter quality. Furthermore, the use of IOC fine (18-23%) with Hainan fine (0-2%) instead of SSF, a mixture of hematite and Marra Mamba ore and concentrates guaranteed the quality of sinter ore through improving fluidity, in the meantime reducing ore matching costs. With the establishment and application of HTPES, the sinter plant has achieved good economic benefits under the premise of ensuring the quality of sinter ore.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第9期910-922,共13页 钢铁研究学报(英文版)
关键词 SINTER Iron ore In situ observation FLUIDITY EVALUATION Industrial practice Sinter Iron ore In situ observation Fluidity Evaluation Industrial practice
  • 相关文献

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部