期刊文献+

复杂问题的主动式应对——贝叶斯方法对思想政治教育大数据实践的启示 被引量:1

On Handling Complex Problems Initiatively——The Inspiration of Bayesian Method to the Practice of Big Data in Ideological and Political Education
下载PDF
导出
摘要 大数据时代下的思想政治教育面临着复杂多变的局面。能否在教育实践中使用好大数据,是能否主动应对复杂局面的关键所在。贝叶斯方法主张将先验信息与数据信息结合起来分析。这种思维有利于充分发挥思想政治教育主体知识的主导作用,在防止大数据技术异化的前提下和尊重大数据知识发现成果的同时,促进二者形成"以人为本"基础上的统一与融合,进一步平衡大数据思想政治教育所面临"唯数据论"与"唯经验论"之间的冲突,为思想政治教育使用大数据解决复杂问题提供了理论思路和实践借鉴。 The ideological and political education will be faced with more changeable situations under the BigData era. Therefore,making proper use of big data in practice becomes the key to handle complex situations initiatively. The Bayesian method advocates to combine the analysis of the prior information with the data information,which gives full play to the leading role of the main knowledge of the ideological and Political Education,respects the achievements of big data knowledge discovery on the premise of preventing big data technology alienation,and promotes the unity and integration of main knowledge and data knowledge on the basis of " human-oriented ". This can not only further balance the conflicts between " only data theory " and " only empiricism" in ideological and political education at the age of Big Data,but provide theoretical thinking and practical reference for ideological and political education to solve complex problems with big data.
作者 赵頔 ZHAO Di(Sehool of Foreign Studies,South China Normal University,Guangzhou,Guangdong,510631)
出处 《广东青年职业学院学报》 2018年第3期41-46,共6页 Journal of Guangdong Youth Vocational College
关键词 大数据 思想政治教育 贝叶斯方法 以人为本 big data ideological and political education the bayesian method human-oriented
  • 相关文献

参考文献7

二级参考文献37

  • 1郏斌祥.科学文化观的兴起[J].自然辩证法通讯,1989,11(5):9-16. 被引量:6
  • 2杨明,陈力.试析复杂性科学视野中的传统文化[J].自然辩证法研究,2006,22(2):100-104. 被引量:2
  • 3杨怀中.科技文化的历史地位及当代价值[J].自然辩证法研究,2007,23(2):93-96. 被引量:23
  • 4巴伯.科学与社会秩序[M].上海:三联书店,1991.248.
  • 51 David Heckerman, Christopher Meek, Gregory Cooper. A bayesian approach to causal discovery. [R]Technical Report MSR-TR-97-05
  • 62 David Heckerman. Bayesian networks for data mining. [J]Data Mining and Knowledge Discovery 1,79~119(1997)
  • 73 Pat Langley, Stephanie Sage. Induction of selective bayesian classifiers. [C]In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence(1994)
  • 84 Gregory F. Cooper, Edward Herskovits. A bayesian method for the induction of probabilistic networks from data. [J]In Maching Learning 9, 309~347 , 1992.2
  • 9张华夏.现代科学与伦理世界[M].北京:中国人民大学出版社,2010:12.
  • 10[美]约翰·罗尔斯 何怀宏 何包钢 廖申白译.正义论[M].北京:中国社会科学出版社,1988.1..

共引文献240

同被引文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部