摘要
设H和K是Hilbert空间.首先,对给定的算子T∈B(H,K),刻画了集合UT={U∈B(H,K):U是部分等距算子并且T=U(T*T)1/2}. 其次,对部分等距算子U∈B(H,K),还给出集合TU={T∈B(H,K):N(T)=N(U),R(T)=R(U),T=U(T*T)1/2}的刻画. 最后,作为主要结果的应用得到了相关结论.
Let H and K be Hilbert spaces. For given T ∈ B(H, K), the set UT={U ∈ B(H, K):U is a partial isometry and T=U(T*T)1/2} is characterized, and then it is also given that a characterization of TU={T ∈ B(H, K):N (T)=N (U), R(T)=R(U), T=U(T*T) 2/1 } for some partial isometry U ∈ B(H, K). In addition, as applications of the main results, some related results are obtained.
作者
海国君
阿拉坦仓
Guo Jun HAI;Alatancang(School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,P.R.China;Huhhot University for Nationalities,Hohhot 010051,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第6期933-942,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11761052,11761029)
内蒙古自然科学基金资助项目(2015MS0117)