摘要
The special topic of the two papers is the systemic acquired resistance (SAR) and pathogenesis-related protein genes (PR). SAR is an enhanced resistance against further potential parasite beyond the initial infection site, which can be induced by either pathogen infection or exogenous inducer, including synthetic chemicals and natural prod- ucts. As a "whole-plant" resistance defense, SAR confers broad-spectrum immunity to widely diverse pathogenic microorganisms, such as viruses, bacteria and fungi for a relatively long lasting period. Convincingly, it is a promising way to prevent crop diseases by activating the plants' own natural defenses via application of chemical inducers or creating resistant wheat cultivars.
The special topic of the two papers is the systemic acquired resistance (SAR) and pathogenesis-related protein genes (PR). SAR is an enhanced resistance against further potential parasite beyond the initial infection site, which can be induced by either pathogen infection or exogenous inducer, including synthetic chemicals and natural prod- ucts. As a "whole-plant" resistance defense, SAR confers broad-spectrum immunity to widely diverse pathogenic microorganisms, such as viruses, bacteria and fungi for a relatively long lasting period. Convincingly, it is a promising way to prevent crop diseases by activating the plants' own natural defenses via application of chemical inducers or creating resistant wheat cultivars.