摘要
令H,G是两个简单图,G是H的一个子图.H的G-分解,记为(λH,G)-GD,是指将图λH的所有边分拆为若干个与G同构的子图(称为G-区组).H的G-分解的大集,记为(λH,G)-LGD,是指图H的所有与G同构的子图的一个分拆Β1,Β2,…,Βm,使得每个Bj(1≤j≤m)为一个(λH,G)-GD (称为小集).本文中,我们对完全二部图的K(p,p)-分解的大集进行了研究,利用Kv的λ重Kκ-因子大集的存在性结果,采用直接构造的方法,得到了大集(λK(m,n),K(p,p))-LGD的存在谱,其中p为任意素数.
Let H, G be two simple graphs, where G is a subgraph of H. A G-decomposition of H, denoted by (λH, G)-GD, is a partition of all the edges of λH into subgraphs (called G-blocks), each of which is isomorphic to G. A large set of (λH, G)-GD, denoted by (λH, G)- LGD, is a partition of all subgraphs of H that are isomorphic to G into B1, B2,..., Bm, such that each Bj (1 ≤ j ≤ m) is a (λN, G)-GD (called small set). In this paper, we investigate the large sets of Kp,p-decomposition of complete bipartite graphs. Combining the existence result of large sets of λ-fold Kk-factor of Kv, we obtain the existence spectrum of (λKm,n, Kp,p)-LGD by using direct constructions, where p is a prime.
作者
张艳芳
ZHANG YANFANG(College of Mathematics and Statistics Hebei University of Economics and Business,Shijiazhuang 050061,China)
出处
《应用数学学报》
CSCD
北大核心
2018年第5期589-595,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11401158,11171089)
河北省高等学校科学技术研究项目(QN2015240)
河北经贸大学科研基金(2014KYQ04)资助项目
关键词
大集
Kp
p-分解
完全二部图
large set
Kp,p-decomposition
complete bipartite graph