期刊文献+

一类具有自由边界的反应扩散对流的SI传染病模型 被引量:2

A Reaction Diffusion-advection SI Epidemic Model with Free Boundaries
原文传递
导出
摘要 本文研究了一类具有双自由边界的SI模型,引入两个自由边界来描述疾病传播的边沿.首先,讨论了该问题全局解的存在性和唯一性.其次,分别定义了相应于该模型下的常微分方程系统和在固定域上的系统的基本再生数R0与R0^D.进而,定义了该模型在自由边界条件下的基本再生数R0^F,并获得了疾病消退或蔓延的充分条件,结果表明:当R0〈1时,无论染病者的初始值多少,疾病都不会蔓延到整个区域.而当R0-F〈1且染病者的初始值‖I0(x)‖C([-h0,h0])充分小时,疾病将消退;当R0-F〉1时,疾病将蔓延. A reaction-diffusion-advection SI epidemic model is investigated, Two free boundaries are introduced to describe the spreading frontiers of the disease. First, the existence and uniqueness of the global solution are given. Secondly, the basic reproduction number Ro and R0^D are defined for the corresponding ODE system and the corresponding system in the fixed domain of the free boundary problem, meanwhile, the basic reproduction number R0^F is defined for the free boundary problem. Sufficient conditions for vanishing or spreading of the disease are obtained. Our results show that the disease will not spread to the whole area if R0〈1 no matter what the initial date are, and vanishing of the disease if R^F(0)〈1 and ‖I0(x)‖C([-h0,h0]) is sufficiently small. Spreading of the disease occurs if R0^F(0)〉1.
作者 梁建秀 LIANG JIANXIU(School of Mathematics,Jin Zhong University,Jinzhong 030619,China;Shanxi Laboratorg of Methods Disease Prevention and Control and Big Data Analysis Shanxi University,Taiyuan 030006,China)
出处 《应用数学学报》 CSCD 北大核心 2018年第5期698-710,共13页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(61573016) 晋中学院优秀数学建模团队资助项目
关键词 SI模型 扩散 对流 自由边界 蔓延与消退 SI model diffusion advect-ion free boundary spreading and vanishing
  • 相关文献

参考文献1

二级参考文献21

  • 1Xiao X, et al. Particular symmetry in RNA sequence of SARS and the origin of SARS coronavirus. Int J Nonlinear Sci Numer Simul, 2005, 6:181-186.
  • 2Anderson R M, May R M, Jackson H C, Smith A D M. Population dynamics of fox rabits in Europe. Nature, 1981, 289:765-777.
  • 3Cao L Q, Mena L J, Hethcote H W. Four SEI epidemic models with periodicity and separatrices. Math Biosci, 1995, 128:157-184.
  • 4Li G H, Jin Z. Global stability of an SEI epidemic model. Chaos Solitons Fractals, 2004, 21:925-931.
  • 5Li G H, Jin Z. Global stability of an SEI epidemic model with general contact rate. Chaos Solitons Fractals, 2005, 23:997-1004.
  • 6Rubinstein L I. The Stefan Problem. Providence, RI: American Mathematical Society, 1971.
  • 7Amadori A L, Vazquez J L. Singular free boundary problem from image processing. Math Models Methods Appl Sci, 2005, 15:689-715.
  • 8Merz W, Rybka P. A free boundary problem describing reaction diffusion problems in chemical vapor infiltration of pyrolytic carbon. J Math Anal Appl, 2004, 292:571-588.
  • 9Tao Y S, Chen M J. An elliptic-hyperbolic free boundary problem modelling cancer therapy. Nonlinearity, 2006, 19:419-440.
  • 10Lockwood J L, Hoopes M F, Marchetti M P. Invasion Ecology. Texas: Blackwell Publishing, 2007.

共引文献1

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部