期刊文献+

基于VG-DBSCAN算法的大场景散乱点云去噪 被引量:33

Large-Scale Scattered Point-Cloud Denoising Based on VG-DBSCAN Algorithm
原文传递
导出
摘要 针对城市环境下三维激光雷达(LiDAR)点云数据密度不均匀、离群噪点多而不利于后期点云帧间匹配的问题,提出一种应用于城市环境下大规模散乱LiDAR点云的离群噪点滤除算法。该算法对传统的基于密度的噪声应用空间聚类(DBSCAN)算法进行改进,通过对三维点云进行体素栅格划分,创建了一个由栅格单元组成的集合,以此大幅减小每个对象在数据空间中邻域的搜索范围。改进后的算法能够快速发现各个聚类,使目标点云与离群点分离,从而剔除点云中的离群噪点。实验结果表明:所提算法能够实时处理点云数据,在保证点云三维几何特征的同时能有效识别并滤除点云中的离群噪点,降低点云规模,加快点云后续处理的效率,使帧间匹配的精确度提高了2倍,且匹配耗时仅为去噪处理前的1/3。 Non-uniform 3 Dlight detection and ranging(LiDAR)point-cloud data with outlier noises are not conducive to interframe point-cloud-matching in urban environments.Thus,an outlier noise filtering algorithm for large-scale scattered LiDAR point-cloud in urban environments is proposed.This algorithm improves the traditional density-based spatial clustering of applications with noise(DBSCAN)algorithm by applying voxel-grid partitioning to the three-dimensional point-cloud to create a set of grid cells,which greatly reduces the search scope of each object′s neighborhood in the data-space range.The improved algorithm can quickly find each cluster,which separates the target point-cloud from the outliers,thus eliminating the outlier noise in the point-cloud.The experimental results show that the proposed algorithm can process point-cloud data in real-time,ensure threedimensional geometric features of point-cloud,effectively recognize and filter out outlier noise,reduce the scale of point-cloud,and speed up the subsequent processing efficiency of the point-cloud.Using this algorithm,the accuracy of matching between the frames is doubled,and the matching time is only one-third of the time before denoising.
作者 赵凯 徐友春 李永乐 王任栋 Zhao Kai;Xu Youchun;Li Yongle;Wang Rendong(Army Military Transportation University,Tianjin 300161,China;Institute of Military Transportation,Tianjin 300161,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第10期362-367,共6页 Acta Optica Sinica
基金 国家重点研发计划(2016YFB0101001-6)
关键词 遥感 激光雷达 点云去噪 密度聚类 remote sensing LiDAR point-cloud denoising density clustering
  • 相关文献

参考文献6

二级参考文献53

  • 1柯映林,陈曦.叶片破损区域边界的自动提取算法研究[J].计算机辅助设计与图形学学报,2005,17(6):1316-1321. 被引量:6
  • 2贺美芳,周来水,神会存.散乱点云数据的曲率估算及应用[J].南京航空航天大学学报,2005,37(4):515-519. 被引量:27
  • 3孙红岩,孙晓鹏,李华.基于K-means聚类方法的三维点云模型分割[J].计算机工程与应用,2006,42(10):42-45. 被引量:23
  • 4朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 5Hawkins D M. Identification of outliers[J]. Biometrical Journal, 1980, 29(2): 198-200.
  • 6Johnson T, Kwok 1, Ng R. Fast computation of 2- dimensional depth contours [C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998:224-228.
  • 7Jain A K, Murty M N, Flynn P J. Data clustering: a review [J]. ACM Computing Surveys, 1999, 31(3): 264-323.
  • 8Papadimitriou S, Kitawaga H, Gibbons P B, et al. LOCI: fast outlier deteetion using the local correlation integral [C]//Proceedings of the 19th International Conference on Data Engineering. Los Alamitos: IEEE Computer Society Press, 2003:315-326.
  • 9Knorr E M, Ng R T, Tucakov V. Distance-based outliers: algorithms and applications[J]. The VLDB Journal, 2000, 8 (3/4) : 237-253.
  • 10Breunig M M, Kriegel H, Ng R T, et al. Lof: identifying density-based local outliers I-C] //Proeeedings of ACM SIGMOD International Conference on Managernent of Data. New York: ACM Press, 2000:93-104.

共引文献142

同被引文献265

引证文献33

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部