摘要
令H为复的无限维可分的Hilbert空间,B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理,若σ(T)\σ_w(T)=π_(00)(T),其中σ(T)和σ_w(T)分别表示算子T的谱集与Weyl谱,π_(00)(T)={λ∈isoσ(T):0<n(T-λI)<∞}。算子T∈B(H)称为具有单值延拓性质,若对任意的开集UC,满足方程(T-λI)f(λ)=0(任给λ∈U)的唯一解析函数为零函数。本文将算子的单值延拓性质应用到了Weyl定理的判定中,给出了算子满足Weyl定理的新的判定方法。
Let H be an infinite dimensional separable complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. T ∈ B (H) satisfies Weyl's theorem if σ(T)/σw(T)=π00(T) , where σ (T) and σw (T) denote the spectrum and the Weyl spectrum respectively, π00(T)={λ∈isoσ(T):0〈n(T-λI)〈∞}. An operator T∈ B(H) is said to have the single-valued extension property, if for every open set U C, the only analytic solution of the equation (T-λI)f(λ)=0 ( for all λ∈U) is zero function on U. Using the single-valued extension property, we give a new judgement for Weyl's theorem.
作者
张莹
曹小红
戴磊
ZHANG Ying;CAO Xiao-hong;DAI Lei(College of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,Shaanxi,China;College of Mathematics and Physics,Weinan Normal University,Weinan 714000,Shaanxi,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第10期82-87,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11471200
11501419)
陕西师范大学中央高校基本科研业务费专项资金资助项目(GK201601004)
渭南市科技计划资助项目(2016KYJ-3-3)
渭南师范学院自然科学人才资助项目(15ZRRC10)
关键词
WEYL定理
谱
单值延拓性质
Weyl's theorem
spectrum
single-valued extension property