期刊文献+

400 TW operation of Orion at ultra-high contrast

400 TW operation of Orion at ultra-high contrast
原文传递
导出
摘要 The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mm thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J.The second-harmonic capability has been upgraded by taking two square 300 mm × 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic. The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mrn thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mmx 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.
机构地区 AWE plc
出处 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第3期79-84,共6页 高功率激光科学与工程(英文版)
关键词 短脉冲 激光技术 物理学 理论研究 contrast frequency conversion ultra-high intensity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部