期刊文献+

基于深度学习的安全帽检测方法研究 被引量:4

Research on detection method of safety helmet based on deep learning
下载PDF
导出
摘要 在电厂生产过程中,安全帽对于保障员工的安全具有非常重要的作用。工作人员在进行生产操作时未正确穿戴安全帽有可能直接导致事故的发生。在开发电厂不安全行为视频检测系统中,安全帽的检测将是一项需要解决的关键问题。本文通过收集现场图片信息和人工标注的方法,构建了训练集和测试集。通过采用深度学习算法,在数据集上得到了一种具备安全帽检测的神经网络模型。经验证,该模型在构建的测试集上达到了良好的检测效果。 Helmet plays a very important role in ensuring the safety of employees in the production process of power plants.Improper wearing of safety helmet during production operation may cause accidents directly.In the development of video detection system for unsafe behaviors in power plants,the detection of safety helmets will be a key problem to be solved.In this paper,the training set and the test set are constructed by collecting on-site picture information and manually tagging.A neural network model with helmet detection is obtained on the data set by using the deep learning algorithm.It is verified that the model has achieved good detection results on the constructed test set.
作者 郝存明 朱继军 张伟平 HAO Cun-ming;ZHU Ji-jun;ZHANG Wei-ping(Institute of Applied Mathematics,Hebei Academy of Sciences,Shijiazhuang Hebei 050000,China;Information Security Certification Engineering Technology Research Center,Shijiazhuang Hebei 050000,China;State Power Investment Hebei Electric Power CO.,LTD,Shijiazhuang Hebei 050000,China)
出处 《河北省科学院学报》 CAS 2018年第3期7-11,共5页 Journal of The Hebei Academy of Sciences
基金 河北省科学院科技计划项目(18601)
关键词 安全帽 不安全行为 深度学习 卷积神经网络 Safety helmet Unsafe action Deep learning Convolution neural networks
  • 相关文献

参考文献6

二级参考文献119

  • 1Probst T M, Estrada A X. Accident under-reporting among employees:Testing the moderating influence of psychological safety climate and supervisor enforcement of safety practices [ J ]. Accident Analysis & Prevention, 2010,42 ( 5 ) : 1438-1444.
  • 2Yule S, Flin R, Murdy A. The role of management and safety climate in preventing risk-taking at work [ J ]. International Journal of Risk Assessment and Management, 2007,7 ( 2 ) : 137-151.
  • 3Vredenburgh A G. Organizational safety:Which management practices are most effective in reducing em- ployee injury rates ? [ J ]. Journal of Safety Research, 2002,33 (2) :259-276.
  • 4Chyene A, Cox S, Oliver A, Tomas J M. Modeling safety climate in the prediction of levels of safety activity[ J]. Work & Stress, 1998,12(3) :255-271.
  • 5Larsson S, Pousette A, Torner M. Psychological climate and safety in the construction industry-mediated influence on safety behaviour [ J ]. Safety Science, 2008,46(3) :405-412.
  • 6Pousette A, Larsson S, Torner M. Safety climate cross-validation, strength and prediction of safety be- haviour [ J ]. Safety Science, 2008,46 (3) : 398-404.
  • 7Rundmo T. Safety climate, attitudes and risk perception in Norsk Hydro [ J ] . Safety Science, 2000,34 (1/3) :47-59.
  • 8Inoue K, Gotoh E, Ishigaki I, Hasegawa T. Factor analysis of risk-taking behavior in forest work [ J ]. Journal of Forest Research, 1999,4(3) :201-206.
  • 9Meyer J P, Allen N J. Testing the " side-bet theory" of organizational commitment: Some methodological considerations [ J ]. Journal of Applied Psychology, 1984,69(3 ) :372-378.
  • 10Harper A C, Cordery J L, De Klerk N H, Sevastos P, Geelhoed E, Gunson C, Robinson L, Sutherland M, Osbom D, Colquhoun J. Curtin industrial safety trial:Managerial behavior and program effectiveness [ J ]. Safety Science, 1996,24 ( 3 ) : 173-179.

共引文献2479

同被引文献30

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部