期刊文献+

基于随机投影与加权稀疏表示残差的光照鲁棒人脸识别方法 被引量:4

Illumination robust face recognition based on random projection and weighted residual of sparse representation based classification
下载PDF
导出
摘要 针对人脸识别中的光照变化问题,利用随机投影对传统稀疏表示分类器进行改进,提出一种基于随机投影与加权稀疏表示残差的光照鲁棒人脸识别方法。通过对人脸图像进行光照规范化处理,尽量消除人脸图像上的恶劣光照,取得经光照校正的人脸样本后进行多次随机空间投影,进一步丰富样本的光照不变特征,以减小光照变化对人脸识别带来的影响。在此基础上,对利用单一残差分类的传统稀疏表示分类方法进行改进,样本经过多次随机投影和稀疏表示会产生多个样本特征和重构残差,利用样本特征的能量来确定各个重构残差的融合权值,最终得到一种稳定性和可靠性更强的加权残差。在Yale B和CMU PIE两个光照变化较大的人脸库上的实验结果表明,改进的方法具有较强的光照鲁棒性。与传统稀疏表示方法相比,本文提出的方法在Yale B人脸库上两组实验的平均识别率分别提高了25.76%和46.39%,在CMU PIE上的平均识别率提高了10%左右。 To solve the problem of illumination variation in face recognition, we improve the tradi tional sparse representation classification (SRC) by using random projection, and propose an illumina tion robust face recognition method based on random projection and weighted residual of sparse represen ration based classification (RPWR SRC). By normalizing the illumination of the face image, the bad illu mination on the face image is eliminated as much as possible. Then we introduce random projection into the proposed method. The face images with illumination correction are projected to multiple random spaces to enrich the illumination invariant features of the samples and to reduce the influence of illumina tion changes on face recognition. On this basis, we utilize the single residual classification to improve the traditional sparse representation classification method. By multiple random projections and sparse repre sentations, we can obtain multiple sample features and reconstructed residuals. With the energy of sam pie features, we determine the weights for fusion of respective reconstructed residual to get a more sta ble and reliable weighted residual instead of single residual in traditional SRC. Experiment results on Yale B and CMU PIE face databases show that, the proposed RPWR SRC has strong robustness for face recognition under different illumination conditions. Compared with the traditional SRC, its average rec ognition rates of the two experiments on Yale B face database are increased by 25.76% and 46.39% re spectively, and the average recognition rate on CMU PIE is increased by about 10%.
作者 李燕 章玥 LI Yan;ZHANG Yue(Software/Hardware Co design Engineering Research Center of MOE,East China Normal University,Shanghai 200062,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第11期2015-2022,共8页 Computer Engineering & Science
基金 国家自然科学基金重点项目(61532019) 上海市科委项目(15511104700 16DZ1100600) 国防基础科研计划(JCKY2016212B004-2) 上海市高可信计算重点实验室开放课题(07dz22304201607)
关键词 稀疏表示 随机投影 加权残差 光照鲁棒人脸识别 sparse representation random projection weighted residual illumination robust face recognition
  • 相关文献

参考文献2

二级参考文献51

  • 1AKL A, CHEN F, VALAEE S. A novel accelerometer-based ges- ture recognition system [ J]. IEEE Transactions on Signal Process- ing, 2011, 59(12): 6197-6205.
  • 2Apple. Apple iPhone [ EB/OL]. [2014-05-30]. http://www, ap- ple. com/iphone.
  • 3Nintendo. Wii [ EB/OL]. [ 2014-05-30]. http://www, nintendo. com/wii.
  • 4PANWAR M. Hand gesture recognition based on shape parameters [ C]// Proceedings of the 2012 International Conference on Compu- ting, Communication and Applications. Piscataway: IEEE, 2012:1 -6.
  • 5PREKOPCSAK Z. Accelerometer based real-time gestures recogni- tion [ D]. Budapest: Budapest University of Technology and Eco- nomics, 2008.
  • 6KILNGMANN M. Accelerometer-based gesture recognition with the iPhone [ D]. London: Goldsmiths University, 2009.
  • 7YANG A, IYENGAR S, SASTRY S, et al. Distributed segmenta- tion and classification of human actions using a wearable motion sen- sor network [ C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piseataway: IEEE, 2008:23-28.
  • 8ZHANG X, CHEN X, WANG W, et al. Hand gesture recognition and virtual game control based on 3D aceelerometer and EMG sen- sors [ C] // Proceedings of the 14th International Conference on In- telligent User Interfaces. New York: ACM, 2009:401 -409.
  • 9LEE-COSIO B M, DELGADO-MATA C D, IBANEZ J. ANN for gesture recognition using accelerometer data [ J]. Procedia Tech- nology, 2012, 3:109 - 120.
  • 10WU J, PAN G, ZHANG D, et al. Gesture recognition with a 3D accelerometer [ C]// Proceedings of the 6th International Confer- ence on Ubiquitous Intelligence and Computing, LNCS 5585. Ber- lin: Springer, 2009:25-38.

共引文献11

同被引文献54

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部