摘要
商品评论对消费者的购买意愿有明显导向作用,欺诈者可杜撰评论来过度褒奖或恶意贬低商品,以此来促进己方或是打击对方的商品销售,垃圾商品评论检测成为了一项迫切需要的技术。首先将相关研究分为以评论内部(文本特征)为中心和以评论外部(文本特征)为中心的两大类,然后分别综述它们在特征选择、学习方法上的研究进展,并介绍了垃圾商品评论检测领域的常用评论数据集,在此基础上,展望了该领域的热点研究方向。
E-commerce wehsite's product reviews have a guiding effect on the user's purchase inten tion. However, spammers may create fake reviews to artificially promote or demote target products.Techniques for detecting review spare therefore have become an urgent need. We first divide the related researches into two categories: internal review (text features) -centric and external reviews (behavior features)- centric. Then, their research progresses on feature selection and machine learning methods are summarized. The common data sets in product review spare detection are summarized. Finally, we point out some potential research directions based on the review.
作者
张圣
伍星
邹东升
ZHANG Sheng;WU Xing;ZOU Dong-sheng(College of Computer Science,Chongqing University,Chongqing 400044,China)
出处
《计算机工程与科学》
CSCD
北大核心
2018年第11期2060-2066,共7页
Computer Engineering & Science
基金
国家自然科学基金(61309013)
重庆市科技计划项目基础科学与前沿技术研究专项项目(Cstc2014jcyjA40042)