期刊文献+

垃圾商品评论检测研究综述 被引量:2

Review:Detection of product review spam
下载PDF
导出
摘要 商品评论对消费者的购买意愿有明显导向作用,欺诈者可杜撰评论来过度褒奖或恶意贬低商品,以此来促进己方或是打击对方的商品销售,垃圾商品评论检测成为了一项迫切需要的技术。首先将相关研究分为以评论内部(文本特征)为中心和以评论外部(文本特征)为中心的两大类,然后分别综述它们在特征选择、学习方法上的研究进展,并介绍了垃圾商品评论检测领域的常用评论数据集,在此基础上,展望了该领域的热点研究方向。 E-commerce wehsite's product reviews have a guiding effect on the user's purchase inten tion. However, spammers may create fake reviews to artificially promote or demote target products.Techniques for detecting review spare therefore have become an urgent need. We first divide the related researches into two categories: internal review (text features) -centric and external reviews (behavior features)- centric. Then, their research progresses on feature selection and machine learning methods are summarized. The common data sets in product review spare detection are summarized. Finally, we point out some potential research directions based on the review.
作者 张圣 伍星 邹东升 ZHANG Sheng;WU Xing;ZOU Dong-sheng(College of Computer Science,Chongqing University,Chongqing 400044,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第11期2060-2066,共7页 Computer Engineering & Science
基金 国家自然科学基金(61309013) 重庆市科技计划项目基础科学与前沿技术研究专项项目(Cstc2014jcyjA40042)
关键词 垃圾商品评论 文本特征 行为特征 评论数据集 product review spare text feature behavior feature opinion data set
  • 相关文献

参考文献3

二级参考文献51

  • 1Murthy G, Liu B. Mining opinions in comparative sentences [C] //Proe of the 22nd Int Conf on Computational Linguistics (COLOING'08). NewYork ACM, 2008 241-248.
  • 2Hu Mingqing, Liu Bing. Mining opinion features in customer reviews [C] //Proc of the 19th National Conf on Artificial Intelligence(AAAI'04). San Jose: American Association for Artificial Intelligence, 2004:775-760.
  • 3Nitin J, Liu B. Opinion spam and analysis [C] //Proc of the 1st ACM Int Conf on Web Search and Data Mining (WSDM'08). New York: ACM, 2008:137-142.
  • 4Myle O, Choi Y L, Claire C, et al. Finding deceptive opinion spam by any stretch of the imagination [C] //Proc of the 49th Annual Meeting of the Association for Computational Linguistics Human Language Technologies ( ACL'11 ). Stroudshurg, PA Association for Computational Linguistics, 2011:309-319.
  • 5Li Fangtao, Huang Minlie, Yang Yi, et al. Learning to identify review spare [C] //Proc of the 22nd Int Joint Conf on Artificial Intelligence (IJCAI'2011). San Francisco.- Morgan Kaufmann, 2011:2488-2493.
  • 6Feng S, Ritwik B, Choi Y J. Syntactic stylometry for deception detection [C] //Proc of the 50th Annual Meeting of the Association for Computational Linguistics (ACL'12). Stroudsburg, PA Association for Computational Linguistics, 2012:171-175.
  • 7Liu B, Wee S L, Philip S Y, et el. Partially supervised classification of text documents [C] //Proc of the 19th Int Conf on Machine Learning (ICML'02). New York: ACM, 2002 387-394.
  • 8Charles E, Keith N. Learning classifiers from only positive and unlabeled data [C] //Proc of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Ming(SIGKDD'08). New York: ACM, 2008 213-220.
  • 9Li X L, Philip S Y, Liu B, et el. Positive unlabeled learning for data stream classification [C] //Proc of the 9th SIAM Int Conf on Data Ming (SDM'09). Philadelphia, PA= SIAM, 2009 .. 257-268.
  • 10Liu B, Yang D, Li X L, et al. Building text classifiers using positive and unlabeled examples [C] //Proc of the 3rd IEEE Int Conf on Data Ming(ICDM'03). Piscataway, NJ: IEEE, 2003:179-182.

共引文献47

同被引文献37

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部