期刊文献+

最优粒子初值有效估计的线阵列方向图优化算法

Linear Array Pattern Optimization Algorithm for Effective Estimation of Optimum Particle Initial Values
下载PDF
导出
摘要 粒子群优化算法(PSO)通常随机赋初值。提出一种新的线阵方向图优化的PSO算法。通过矩阵运算解析出对应预期方向图的一组阵元权系数的估值。将该估值视为最优粒子初值的有效估计量。将该估计量赋值给种群的一个粒子,而其他粒子仍然赋随机初值。新优化算法与传统PSO算法唯一区别在于粒子初值的初始化方法。仿真实验结果表明,新算法不但收敛速度更快,而且适应度值收敛的更深,能够有效提高传统PSO算法的在复杂的非线性优化问题上的收敛特性。 For particle swarm optimization (PSO), all particles are always initialized randomly, but here a new initialization method is presented to improve PSO optimizer convergence performance. On the basis of desired pattern, the corresponding aperture weights are solved by analytical techniques which can to a great extent ensure that these weights are effective estimations of the current optimum particle initial values. Then they are assigned to a particle as initial values, but all other particles of the swarm are still initialized randomly. Except this new initialization step, nothing is changed in PSO optimizer. The simulation results prove that this new optimizer converges faster and the fitness value converges deeper than the standard PSO especially in more complicated optimization problems. So the presented initialization method and new optimizer are effective in improving standard PSO convergence performances.
作者 仇永斌 张树春 王元诚 范文澜 李德鑫 Chou Yongbin;Zhang Shuchun;Wang Yuancheng;Fan Wenlan;Li Dexin(Department of Bomber and Transport Pilot Conversion,Air Force Harbin Flight Academy,Harbin 150001,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第11期4079-4085,共7页 Journal of System Simulation
基金 国家自然科学基金(61273095)
关键词 线性阵列 方向图优化 非线性优化 最优粒子 粒子群优化算法(PSO) linear array pattern optimization nonlinear optimization optimum particles particle swarm optimization (PSO)
  • 相关文献

参考文献2

二级参考文献20

  • 1杨丽娜,丁君,郭陈江,许家栋.基于遗传算法的阵列天线方向图综合技术[J].微波学报,2005,21(2):38-41. 被引量:26
  • 2焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报,2006,21(1):16-20. 被引量:59
  • 3M M Khodier,C G.Christodoulou. Linear array geometry syn-thesis with minimum side lobe level and null control using par-ticle swarm optimization[ J]. TEEE Transactions on Antennasand Propagation,2005,53, (8) :2674 - 2679.
  • 4Herminia Calvete,Carmen Gale,Pedro Mateo. A new approachfor solving linear bilevel problems using genetic algorithms [J].European Journal of Operational Researchs, 2008, (1) : 14-18.
  • 5刘煌.一种基于遗传算法的改进优化算法[J].软件导刊,2010,9(3):59-61.
  • 6Marco Panduro,Carlos Brizuela,David Covarrubias. Design ofelectronically steerable linear arrays with evolutionary algo-rithms[j] .Applied Soft Computing,2008,8(1) :46- 54.
  • 7Johnson J M, Rahmat-Samii Y. Genetic Algorithms in Engineering Electromagnetics [J]. IEEE Antennas and Propagation Magazine (S1045-9243), 1997, 39(4): 7-21.
  • 8Yaman F, Yilmaz, A E. Investigation of fixed and variable mutation rate performances in real coded Genetic Algorithm for uniform circular antenna array pattern synthesis problem [C]//2010 IEEE 18th Signal Processing and Communications Applications Conference (SIU) (B978-1-4244-9672-3), 2010, Diyarbakir, Turkey. USA: IEEE, 2010: 594-597.
  • 9Zhu Liang Yu, Wee Scr, Wei Cert. Linear Aperiodic Array Synthesis Using an Improved Genetic Algorithm [J]. IEEE Antennas and Propagation (S 0018-926X), 2012, 60(2): 895-902.
  • 10Chatterjee A, Mahanti, G K, Mahapatra. Generation of Phase-only Pencil-beam Pair from Concentric Ring Array Antenna Using Gravitational Search Algorithm [C]// Communications and Signal Processing (ICCSP)(B978-1-4244-9798-0), 2011, Calicut, India. CA, USA: IEEE, 2011:384-388.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部