期刊文献+

基于改进极限学习机的风电功率预测仿真研究 被引量:7

Simulation of Wind Power Prediction Based on Improved ELM
下载PDF
导出
摘要 为有效预测超短期风电功率及其波动范围,提出一种基于模糊信息粒化(FIG)和遗传算法优化极限学习机(GA-ELM)的组合预测模型。通过对风电系统参数进行模糊信息粒化,提取各参数在时序窗口下有效分量信息的最大值、最小值和大致平均值。将各参数有效分量整合作为训练样本,并建立基于遗传算法优化极限学习机的预测模型。采用优化后的预测模型完成对下一个时序下风电功率波动范围的预测。实验结果表明,该组合预测模型可以有效跟踪风电功率变化并预测其波动范围。 To predict the range of ultra-short-term wind power fluctuation effectively, a combined forecasting model based on fuzzy information granulation (FIG) and genetic algorithm optimization extreme learning machine (GA-ELM) is proposed. The parameters of wind power are granulated by fuzzy information, and the corresponding valid information including the maximal value, the minimum value, and the general average value in time series window is further extracted. By integrating the effective components of each parameter as training samples, the GA-ELM-based prediction model is established. The range of wind power fluctuation in next time series is forecasted through using the optimized model. The experimental results demonstrate that the combined prediction model can effectively track some variations in wind power and predict the range of wind power fluctuation.
作者 王浩 王艳 纪志成 Wang Hao;Wang Yan;Ji Zhicheng(Engineering Research Center of Interact of Things Technology Applications Ministry of Education,Wuxi 214122,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第11期4437-4447,共11页 Journal of System Simulation
基金 国家自然科学基金(61572238) 江苏省杰出青年基金(BK20160001)
关键词 风电功率 组合预测 模糊信息粒化 遗传算法 极限学习机 wind power combined prediction fuzzy information granulation genetic algorithm extreme learning machine
  • 相关文献

参考文献7

二级参考文献123

  • 1中国风能资源的详查和评估[J].风能,2011(8):26-30. 被引量:24
  • 2丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 3丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 4迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:500
  • 5BREMNES J B, VILLANGER F. Probabilistic forecasts for daily wind power production[C]// Proceedings of the Global Wind Power Conference, April 2-5, 2002, Paris, France.
  • 6LUIG A, BOFINGER S, BEYER H G. Analysis of confidence intervals for the prediction regional wind power output[C]//Proceedings of the European Wind Energy Conference, July 2-7, 2001, Copenhagen, Denmark.
  • 7BREMNES J B. Probabilistic wind power forecasts using local quantile regression[J]. Wind Energy, 2004, 7(1): 47-54.
  • 8MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction [J]. Renewable Energy, 2004, 29(6): 939-947.
  • 9KOENKER R, PARK B J. An interior point algorithm for nonlinear quantile regression [J].Journal of Econometrics, 1996, 71(1): 265-283.
  • 10Reigh A. Analysis of wind generation impact on ERCOT ancillary services requirements[R]. New York: GE Energy, 2008.

共引文献464

同被引文献79

引证文献7

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部