摘要
In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.
In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.
作者
Yongting HUANG
Hongxia LIU
黄咏婷;刘红霞(Department of Mathematics, City University of Hong Kong;Department of Mathematics, Jinan University)
基金
supported by the National Natural Science Foundation of China(11271160)