期刊文献+

驾驶人眼睛定位及特征提取算法研究

Research on Driver's Eyes Positioning and Feature Extraction Algorithm
下载PDF
导出
摘要 为进一步提高驾驶人眼睛状态检测对环境、头部姿态的适应性和鲁棒性,提出一种基于主动红外成像和双目立体视觉技术的眼睛定位和特征提取的方法。对采集的3名驾驶人脸部红外图像平滑处理算法、阈值分割算法进行了对比研究,得出适于驾驶人眼睛状态检测的实时算法。在驾驶人脸部区域定位的基础上,采用连通区域标记法对眼睛区域进行精确定位,通过最小二乘椭圆拟合算法获取瞳孔位置,使用Harris角点检测获取普尔钦光斑位置。研究表明:该方法能有效对驾驶人眼睛进行定位,并准确提取相关特征信息。 In order to further improve the adaptability and robustness of drivers eye state detection for different head poses and environments, an eyes positioning and feature extraction algorithm based on active infrared imaging and binocular stereo vision technology was presented. Through the comparison for different infrared image smoothing algorithm and threshold segmentation algorithm for three drivers face infrared image, pointed out the suitable algorithm. On the basis of the driver face localization, the eye area can get the precision location by connected components labeling algorithm, and the pupil position can obtain by based on Least Square method. The Purkinje image position was used Harris corner detection algorithm. This study shows that presented algorithms is effective to get driver's eyes positioning and to extract feature.
作者 孙海燕 屈敏 臧利国 Sun Haiyan;Qu Min;Zang Liguo(School of Automotive and Rail Transit,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《农业装备与车辆工程》 2018年第11期25-29,33,共6页 Agricultural Equipment & Vehicle Engineering
基金 南京工程学院科研基金项目(QKJ201707 PTKJ201702)
关键词 驾驶人 眼睛定位 特征提取 双目视觉 driver eye movements attention distraction binocular vision
  • 相关文献

参考文献3

二级参考文献24

  • 1彭军强,吴平东,殷罡.疲劳驾驶的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589. 被引量:41
  • 2KLAUER S G, DINGUS T A, NEALE V L, et al. The im- pact of driver inattention on near-crash/crash risk : an analy- sis using the 100-car naturalistic driving study data [ R ]. Washington: National Highway Traffic Safety Administra- tion, 2006.
  • 3FORSMAN P M, VILA B J, SHORT R A, et al. Efficient driver drowsiness detection at moderate levels of drowsiness [J]. Accident Analysis and Prevention, 2013, 50: 341- 350.
  • 4AHLSTROM C, NYSTROM M, HOLMQVIST K, et al. Fit- for-duty test for estimation of drivers' sleepiness level: eye movements improve the sleep/wake predictor [ J]. Transpor- tation Research Part C, 2013, 26: 20-32.
  • 5JIN L S, NIU Q N, HOU H J, et al. Driver cognitive dis- traction detection using driving performance measures [ J ]. Discrete Dynamics in Nature and Society, 2012, 2012: 1- 12.
  • 6LENSKIY A A, LEE J S. Driver' s eye blinking detection u- sing novel color and texture segmentation algorithms [ J]. In- ternational Journal of Control Automation and Systems, 2012, 10(2): 317-327.
  • 7SAHAYADHAS A, SUNDARAJ K, MURUGAPPAN M. Detecting driver drowsiness based on sensors: a review [J]. Sensors, 2012, 12: 16937-16953.
  • 8AKERSTEDT T, GILLBERG M. Subjective and objective sleepiness in the active individual [ J ]. International Jour- nal of Neuroscience, 1990, 52: 29-37.
  • 9INGRE M, AKERSTEDT T, PETERS B, et al. Subjective sleepiness, simulated driving performance and blink dura- tion: Examining individual differences [ J ]. Journal of Sleep Research, 2006, 15:47-53.
  • 10YEKHSHATYAN L, LEE J D. Changes in the correlation between eye and steering movements indicate driver distrac- tion [ J ]. IEEE Transactions on Intelligent Transportation System, 2013, 14(1): 136-145.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部