期刊文献+

Study on frictional behavior of carbon nanotube thin films with respect to surface condition 被引量:2

Study on frictional behavior of carbon nanotube thin films with respect to surface condition
原文传递
导出
摘要 In this work, tribological characteristics of thin films composed of entangled carbon nanotubes(CNTs) were investigated. The surface roughness of CNT thin films fabricated via a dip‐coating process was controlled by squeezing during the process with an applied normal force ranging from 0 to 5 kgf. Raman spectra and scanning electron microscopy(SEM) images of the thin films were obtained to estimate the influence of the squeezing process on the crystallinity of the CNTs. The analysis revealed that squeezing could reduce surface roughness, while preserving the crystallinity of the CNTs. Moreover, the surface energy of the cover glass used to press the CNT thin film was found to be the critical factor controlling surface roughness. A micro‐tribometer and macro‐tribometer were used to assess the tribological characteristics of the CNT thin film. The results of the tribotest exhibited a correlation between the friction coefficient and surface roughness. Dramatic changes in friction coefficient could be observed in the micro‐tribotest, while changes in friction coefficient in the macro‐tribotest were not significant. In this work, tribological characteristics of thin films composed of entangled carbon nanotubes (CNTs) were investigated. The surface roughness of CNT thin films fabricated via a dip-coating process was controlled by squeezing during the process with an applied normal force ranging from 0 to 5 kgf. Raman spectra and scanning electron microscopy (SEM) images of the thin films were obtained to estimate the influence of the squeezing process on the crystallinity of the CNTs. The analysis revealed that squeezing could reduce surface roughness, while preserving the crystallinity of the CNTs. Moreover, the surface energy of the cover glass used to press the CNT thin film was found to be the critical factor controlling surface roughness. A micro-tribometer and macro-tribometer were used to assess the tribological characteristics of the CNT thin film. The results of the tribotest exhibited a correlation between the friction coefficient and surface roughness. Dramatic changes in friction coefficient could be observed in the micro-tribotest, while changes in friction coefficient in the macro-tribotest were not significant.
出处 《Friction》 SCIE CSCD 2018年第4期432-442,共11页 摩擦(英文版)
基金 supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A01053416)
关键词 carbon nanotubes FRICTION surface roughness surface energy squeezing process UV irradiation 碳纳米管 薄膜 摩擦学 科学研究
  • 相关文献

同被引文献25

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部