期刊文献+

自适应步长学习指数星载AIS信号盲分离

Satellite-Based AIS Blind Source Separation Based on Adaptive Step Learning Index
下载PDF
导出
摘要 针对传统等变自适应分解(EASI)算法解决星载AIS复信号盲分离收敛速度慢的问题,提出了一种自适应步长学习指数EASI算法。算法利用信号的非高斯性引出步长学习指数,使EASI算法的步长随步长学习指数的增大呈指数衰减。初始阶段步长较大加快了算法收敛,随着步长的减小,产生较小的稳态误差。对上述算法的批处理和自适应处理两种方式分别进行仿真,结果表明,改进算法较传统EASI算法收敛速度有所提高,且算法的自适应处理的稳态误差较传统EASI算法的自适应处理稳态误差也有所减小。 Aiming at the problem that the convergence rate of traditional equivariant adaptive source separation via independence( EASI) algorithm is slow in solving blind source separation of satellite-based AIS complex signals,an EASI algorithm based on adaptive step learning index is proposed in the paper. The step learning index was derived from the non-Gaussian property of the output signal and the step size of EASI algorithm was exponentially decayed with the increase of the step learning index. In the initial stage,the larger step size accelerates the convergence rate of the algorithm,and the steady-state error decreases with the decrease of step size. The batch processing and adaptive processing of the above algorithm were simulated respectively. Experimental simulation results show that the convergence rate of the proposed algorithm is faster than that of traditional EASI algorithm,and the steady-state error of the adaptive processing of the proposed algorithm is less than that of adaptive processing of traditional EASI algorithm.
作者 郭小云 马社祥 GUO Xiao-yun;MA She-xiang(School of Electrical and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《计算机仿真》 北大核心 2018年第11期166-169,174,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61371108)
关键词 算法 步长学习指数 批处理 自适应 Algorithm Step learning index Batch processing Adaptive processing
  • 相关文献

参考文献2

二级参考文献11

  • 1姚毅,贾金玲,姚娅川.盲分离技术在识别生物信号中的应用[J].仪器仪表学报,2004,25(z1):155-156. 被引量:7
  • 2Sansrimahachai P,Ward D B,Constantinides A G.Blind source separation of instantaneous MIMO systems based on the least-squares Constant Modulus Algorithm[J].IEE Proc-Vis Image Signal Process,2005,152(5):616-622.
  • 3Cardoso J-F,Donoho D L.Equivariant adaptive source separation[J].IEEE Trans Signal Process,1996,44:3017-3030.
  • 4Zhang Z L,Yi Z.An efficient independent component analysis algorithm for sub-Gaussian sources[C]//Second International Symposium on Neural Networks (ISNN 2005).Chongqing,China,2005:967-972.
  • 5Chambers J A,Jafari M G,McLaughlin S.Variable step-size EASI algorithm for sequential blind source separation[J].Electronics Letters,2004,40(6):393-394.
  • 6Yuan Lianxi,Wang Wenwu,Chambers J A.Variable step-size sign natural gradient algorithm for sequential blind source separation[J].IEEE Signal Processing Letters,2005,12(8):589-593.
  • 7Chambers J A,Jafari M G,McLaughlin S.Variable step-size EASI algorithm for sequential blind source separation[J].Electronics Letters,2004,40(6):393-394.
  • 8Cichocki A,Amari S.Adaptive blind signal and image processing:learning algorithms and applications[M].New York:John Wiley & Sons Ltd,2002.
  • 9苏野平,何量,杨荣震,朱小刚.一种改进的基于高阶累积量的语音盲分离算法[J].电子学报,2002,30(7):956-958. 被引量:14
  • 10何培宇,殷斌,P.C.W.Sommen.一种有效的语音盲信号分离简化混合模型[J].电子学报,2002,30(10):1438-1440. 被引量:15

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部