期刊文献+

云环境下多载体图书信息自动分类方法仿真 被引量:3

Simulation of Background Suppression Method for Infrared Small Target Tracking
下载PDF
导出
摘要 云环境下多载体图书信息自动分类方法影响信息自动分类的逻辑性和信息类别的清晰有序,在网页、社区、土地、航天等领域广泛应用。针对当前方法由于多载体图书信息分类不具有逻辑性、且信息类别不清晰有序等缺点,导致图书信息不能够完成自动分类,提出了一种基于核聚类的多载体图书信息自动分类方法,利用信息分类的空间模型对图书信息文件进行命名,计算信息分类的向量,使用改进后的TF-IDF方法对图书信息自动分类完成总体计算。再建立一个信息分类粗糙集理论模型,进一步研究信息分类的词条权值和语义属性。在已建立好的图书信息自动分类模型基础上,对信息分类空间进行核聚类计算,得到多载体图书信息自动分类的函数运算法则,利用Euclidean计算图书信息自动分类空间中的距离,完成多载体图书信息自动分类。实验结果表明,提出的方法对多载体图书信息的分类有较高的逻辑性、且信息类别清晰有序,为后续图书信息方面等问题奠定良好基础。 Under the cloud environment,the automatic classification method of multi-carrier book information influences the logic and the clear and orderly information classification of information automatic classification,and has been widely developed in the areas of webpage,community,land,aerospace and other fields. For the current method,because the information classification of multi-carrier books is not logical,and the information categories are not clear and orderly,the book information cannot be automatically classified. An automatic multi-carrier book information classification method based on kernel clustering is proposed. The library information file is named using the spatial model of information classification. The vector of information classification is calculated. The improved TF-IDF method is used to automatically classify the book information. Overall calculation. Then establish a theoretical model of rough set of information classification,and further study the lexical weights and semantic attributes of information classification. On the basis of the established automatic classification model of book information,nuclear clustering calculation is performed on the information classification space,and a function algorithm for automatic classification of multi-carrier books is obtained. The distance in the automatic classification space of book information is calculated using Euclidean and the multi-carrier is completed. Book information is automatically classified. The experimental results show that the proposed method has high logic for the classification of multi-carrier book information,and the information categories are clear and orderly,which lays a good foundation for subsequent book information and other issues.
作者 马亚玲 MA Ya-ling(Henan University of Chinese Medicine,Zhengzhou Henan 450046,China)
机构地区 河南中医药大学
出处 《计算机仿真》 北大核心 2018年第11期285-288,共4页 Computer Simulation
基金 媒体融合背景下的数字图书馆服务模式研究(MP2016-58)
关键词 云环境 多载体 图书信息 自动分类 Cloud environment Multi-carrier Book information Automatic classification
  • 相关文献

参考文献10

二级参考文献102

  • 1惠孛,吴跃.基于不完全朴素贝叶斯分类模型的垃圾邮件分类模型[J].计算机应用,2009,29(3):903-904. 被引量:3
  • 2王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 3TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 4Scheirer W J, Rocha A R, Sapkota A, et al. Toward Open Set Recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 7 ) : 1757- 1772.
  • 5Pan S J,Yang Qiang. A Survey on Transfer Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(10) :1345-1359.
  • 6Long Mingsheng,Wang Jianmin, Ding Guiguang, et al. Transfer Feature Learning with Joint Distribution Adaptation[C]//Proceedings of International Conference on Computer Vision. Washington D. C. ,USA: IEEE Press, 2013:2200-2207.
  • 7Gretton A,Borgwardt K M, Rasch M J, et al. A Kernel Method for the Two-Sample-Problem [ C ]//Proceedings of Advances in Neural Information Processing Systems. Washington D. C. , USA : IEEE Press, 2006 : 513 -520.
  • 8Pan S J,Tsang I W, Kwok J T, et al. Domain Adaptation via Transfer Component Analysis [ J ]. IEEE Transactions on Neural Networks ,2011,22 ( 2 ) : 199-210.
  • 9Long Mingsheng,Ding Guiguang, Wang Jianmin, et al. Transfer Sparse Coding for Robust Image Representa- tion [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2013:407-414.
  • 10Long Mingsheng, Wang Jianmin, Sun Jiaguang, et al. Domain Invariant Transfer Kernel Learning [ J ]. IEEE Transactions on Knowledge and Data Engineering,2014, 27(6) :1519-1532.

共引文献113

同被引文献20

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部