期刊文献+

分布式传感器网络中基于条件后验克拉美-罗下界的被动声目标跟踪局部节点选择算法(英文)

CPCRLB based local node selection for passive acoustic target tracking in a distributed sensor network
下载PDF
导出
摘要 针对分布式传感器网络下的被动声目标跟踪问题,提出了一种基于条件后验克拉美罗下界(Conditional Posterior Cramér-Rao Lower Bounds, CPCRLB)的局部传感器节点选择算法,基于被动声探测背景下的纯方位量测数据,采用粒子滤波器推导得到了CPCRLB的近似解析表达式,进而在该CPCRLB的基础上定义了节点效用贡献作为节点选择准则,结合分布式传感器网络的特点提出了一种局部节点选择方法,节点无需知道全网传感器节点的信息,而是仅利用局部节点信息来决定下一时刻节点的活动状态,从而在实现自治节点选择的同时大大减少网络通信量。通过仿真结果表明,该算法在跟踪精度、能量消耗和计算复杂度方面都表现出较好的性能。 For passive acoustic target tracking in a distributed sensor network, this paper proposed a local node selection algorithm based on conditional posterior Cramer-Rao lower bounds (CPCRLB). The approximate analytical expression of CPCRLB is derived by utilizing particle filters for bearing-only measurements, and it is used to define the utility contribution as the node selection criterion. In the proposed algorithm, each node can only use the local information to determine whether to be activated without the knowledge of all nodes in the network. Simulation results prove the effectiveness of our method and show good performance in tracking accuracy, energy consumption and computational complexity.
作者 江潇潇 赵晓丽 金婕 邓琛 JIANG Xiao-xiao;ZHAO Xiao-li;JIN Jie;DENG Chen(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《声学技术》 CSCD 北大核心 2018年第5期429-434,共6页 Technical Acoustics
基金 National Natural Science Foundation of China(61701295) Foundation for University Young Teacher by Shanghai Municipal Education Committee(ZZGCD15010) Specific Funds of Subject Building for Shanghai University of Engineering Science(2017PT01)
关键词 节点选择 后验克拉美罗下界 纯方位目标跟踪 粒子滤波 分布式传感器网络 node selection posterior Cramer-Rao lower bounds bearings-only target tracking particle filter distributed sensor network
  • 相关文献

参考文献1

二级参考文献12

  • 1刘先省,周林,杜晓玉.基于目标权重和信息增量的传感器管理方法[J].电子学报,2005,33(9):1683-1687. 被引量:32
  • 2A Sayeed,D Estrin,G Pottie,K Ramchandran.Special issue on self-organizing distributed collaborative sensor networks [J].IEEE Journal of Selected Areas on Communication,2005,23(4):689-872.
  • 3F Zhao,J Liu,L Guibas,J Reich.Collaborative signal and information processing:an information-directed approach [J].Proceedings of the IEEE,2003,91(8):1199-1209.
  • 4G M Hoffmann,C J Tomlin.Mobile sensor network control using mutual information methods and particle filters [J].IEEE Transactions on Automatic Control,2010,55(1):32-47.
  • 5K Punithakumar,T Kirubarajan,M L Hernandez.Multisensor deployment using PCRLBs,incorporating sensor deployment and motion uncertainties [J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(4):1474-1485.
  • 6L Zuo,R Niu,P K Varshney.Conditional posterior Cramer-Rao lower bounds for nonlinear sequential Bayesian estimation [J].IEEE Transactions on Signal Processing,2011,59(1):1-14.
  • 7R Niu,P K Varshney.Target location estimation in sensor networks with quantized data [J].IEEE Transactions on Signal Processing,2006,54(12):4519-4528.
  • 8E Masazade,R Niu,P K Varshney.Energy aware iterative source localization for wireless sensor networks [J].IEEE Transactions on Signal Processing,2010,58(9):4824-4835.
  • 9Y Zheng,O Ozdemir,R Niu,P K Varshney.New conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation [J].IEEE Transactions on Signal Processing,2012,60(10):5549-5556.
  • 10刘先省,周林,杜晓玉.基于RIMMKF的一种传感器管理算法[J].电子学报,2007,35(12):2247-2251. 被引量:5

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部