期刊文献+

微通道板高增益二次电子发射层制备研究 被引量:7

Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate
下载PDF
导出
摘要 提高微通道板(Micro-channel Plate,MCP)的综合性能一直都是器件使用性能提升首要解决的关键问题。纳米薄膜材料的发展及其制备技术的成熟为微通道板性能提升提供了契机,使用原子层沉积(Atomic Layer Deposition,ALD)技术,在微通道板的通道内壁生长一层Al2O3薄膜作为高二次电子发射层,以增强通道内壁的二次电子发射能力,从而提升微通道板的增益性能。通过调节ALD沉积过程中的循环数,腔室反应温度和前驱体反应时间,分析工艺条件改变对MCP二次电子增益的影响。结果表明ALD沉积工艺参数对MCP二次电子增益有很大影响,使用适当的工艺参数,可得到具有高二次电子增益的MCP。 The overall performance of the MCP is always a key issue for device performance enhancements. Development of nano-film materials and mature preparation technology provide an excellent opportunity for the development of micro-channel plate. A layer of Al2O3 thin film was fabricated on the inner wall of MCP by ALD as the secondary electron emission layer. It can increase the secondary electron emission coefficient of channel walls, and the gain of micro-channel plate. The effect of different process conditions on the electron gain of MCP was analyzed by adjusting cycles, temperatures and reaction time of the ALD deposition process. The results show that the ALD process parameters have a great influence on the electron gain of MCP, and the MCP with high electron gain can be obtained by using the appropriate process parameters.
作者 郝子恒 李相鑫 张妮 朱宇峰 李丹 HAO Ziheng;LI Xiangxin;ZHANG Ni;ZHU Yufeng;LI Dan(Science and Technology on Low-Light-Level Night Vision Laboratory,Xi′an 710065,China;Kunming Institute of Physics,Kunming 650223,China)
出处 《红外技术》 CSCD 北大核心 2018年第11期1077-1080,共4页 Infrared Technology
关键词 原子层沉积 微通道板 二次电子发射层 atomic layer deposition micro-channel plate secondary electron emission layer
  • 相关文献

参考文献3

二级参考文献23

  • 1Wang Bo, Wei Zhipeng, Li Mei, et al. Improved photoluminescence from passivated InP surface by (NH4)2S treatment [C]//Optoelectronics and Microelectronics Technology (AISOMT), 2011 Academic International Symposium, 2011.
  • 2Zhao H, Shahrjerdi D, Zhu F, et al. Inversion-type InP MOSFETs with EOT of 21 using atomic layer deposited Al2O3 gate dielectric electrochem[J]. Solid-State Lett, 2008, 1: H233.
  • 3Wilmsen C W, Geib K M, Shin J, et al. The sulfurized InP surface[J]. J Vac Sci Technol B, 1989, 7: 4.
  • 4Sandroff C J, Nottenburg R N, Bischoff J C, et al. Dramatic enhancement in the gain of a GaAs/A1GaAs heterostructure bipolar transistor by surface chemical passivation[J]. Appl Phys Left, 1987, 51: 33-35.
  • 5Han I K, Kim E K, Lee J I, et al. Stability of sulfur-treated InP surface studied by photoluminescence and X-ray photoelectron spectroscopy[J]. Appl Phys, 1997, 10: 8.
  • 6Wang Bo, Wei Zhipeng, Li Mei, et al. Tailoring the photoluminescence characteristics of p-type GaSb: The role of surface chemical passivation [J]. Chemical Physics Letters, 2013, 556: 182-187.
  • 7Dong Y, Ding X M, Hou X Y, et al. Sulfur passivation of GaAs metal-semiconductor field-effect transistor [J]. Appl Phys Lett, 2000, 77: 23.
  • 8Dong Y, Ding X M, Hou X Y, et al. Sulfur passivation of GaAs metal-semiconductor field-effect transistor [J]. Appl Phys Lett, 2000, 77: 3.
  • 9Kim T S, Lester S D, Streetman B G. Observation of radiative surface states on InP [J]. Appl Phys, 1987, 61: 2072.
  • 10Yuan Z L, Ding X M, Lai B, et al. Neutralized (NFL)2S solution passivation of III - V phosphide surfaces [J]. Appl Phys Lett, 1998, 73: 2977-2979.

共引文献11

同被引文献61

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部