期刊文献+

基于深度学习的井下环境异常工况智能识别技术研究 被引量:7

Research on intelligent recognition technology of abnormal operating conditions in underground environment based on deep learning method
下载PDF
导出
摘要 为了使装备在井下复杂环境中具有自主精准辨识井下对象和作业环境的能力,实现无轨装备及其他各类型装备无人化作业和开采,提出了基于利用深度学习方法开展井下环境异常工况智能识别分类研究。通过分析装备正常运行和作业的主要影响因素,构建了井下环境异常工况数据集,采用旋转变换、平移变换、缩放变换等数据增强技术,有效防止网络训练过拟合;基于InceptionResnet V2模型采用层冻结方法,重新训练全连接模型,通过不同的迁移策略进行实验对比分析。研究结果表明:添加2层全连接层,且每层包括4 096个神经元的迁移策略模型性能最佳,鲁棒性好,能够精准识别分类井下环境异常工况。 In order to make the equipments own the ability to identify the underground objects and operating environment independently and accurately in the underground complex environment, and realize the unmanned operating and mining of trackless equipments and other types of equipments, the research on intelligent recognition and classification of abnormal op- erating conditions in the underground environment based on the deep learning method was carried out. The dataset of abnor- mal operating conditions in the underground environment was established through analyzing the main factors affecting the nor- real running and operation of equipments, and the data enhancement technologies such as rotation transformation, translation transformation, zoom transformation and others were applied to effectively prevent the network training from overfitting. The fully connected model was retrained by using the layer freeze method based on the InceptionResnetV2 model, and the experi- mental comparative analysis was conducted with different transfer strategies. The results showed that the transfer strategy model with adding two-layer fully connected layer and containing 4096 neurons in each layer had the optimal performance with a good robustness, and it could identify the abnormal operating conditions in the underground environment accurately.
作者 涂思羽 彭平安 蒋元建 TU Siyu;PENG Pingan;JIANG Yuanjian(School of Resources and Safety Engineering,Central South University,Changsha Hunan 410083,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2018年第11期58-63,共6页 Journal of Safety Science and Technology
基金 国家重点研发计划(2017YFC0602905)
关键词 井下环境 无人开采 异常工况 深度学习 underground environment unmanned mining abnormal operating conditions deep learning method
  • 相关文献

参考文献3

二级参考文献37

  • 1汪涛,樊孝忠,顾益军,刘林.基于概念分析的主题爬虫设计[J].北京理工大学学报,2004,24(10):890-893. 被引量:10
  • 2郑健珍,林坤辉,周昌乐,康恺.基于本体语义的定题爬虫[J].山东大学学报(理学版),2006,41(3):106-110. 被引量:11
  • 3Rao K V s. An Overview of Backscattered Radio Frequency Identification System(RFID)[ C] //Microwave Conference, 199 Asia-Pacific: [ s. n. ], 1999. 746-749.
  • 4Ruff T M, Hession-Kunz D. IEEE Transaction on Industry Applications Conference[C]//Thirty-Third IAS Annual Meeting. [ S. l. ] : IEEE, 1998 : 2190-2195.
  • 5Zhang Qinghua, Wang Bo, Cheng, et al. Object Position Tracking Based on E-map and RFID in Coal Mine[C]//4th IEEE Conference on Industrial Electronics and Applications. [ S. l. ] : IEEE, 2009:880-885.
  • 6Chong Wang, Hongyi Wu, RFID-Based 3-D Positioning Schemes. In: INFOCOM 2007[ C]//26th IEEE International Conference on Computer Communications. [s. n. ] : IEEE,2007:1235-1243.
  • 7Chang A Y, Chang-Sung Yu, Sheng-Chi Lin, et al. Search, Identification and Positioning of the Underground Manhole with RFID Ground Tag. 5331405 in: INC, IMS and IDC, 2009. NCM '09[C]//Fifth International Joint Conference on. [S. l. ] : IEEE, 2009:1899-1903.
  • 8Sun Youb, Kim Sun-Youb, Park Hyoung-Keun, et al. A Study on Control Method to Reduce Collisions and Interferences Between Multiple RFID Readers and RFID Tag[ C]//New Trends in Information and Service Science. [ S. l. ] : IEEE, 2009:339- 343.
  • 9Su Weilian, Alchazidis N, Ha T T. Multiple RFID Tags Access Algorithm[J ]. IEEE Transactions on Mobile Computing, 2010,9(2): 174-187.
  • 10Mohsenian-Rad A H, Shah-Mansouri V, Wong V W S, et al. Distributed Charmel Selection and Randomized Interrogation Algorithms for Large-scale and Dense RFID Systems[J]. IEEE Transactions on Wireless Communications, 2010,9(4) : 1402- 1413.

共引文献23

同被引文献56

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部