摘要
针对一类分数阶SEIS型传染病模型研究了该模型平衡点的局部稳定性和全局稳定性问题。证明了该模型平衡点的存在性和唯一性,并通过特征根方法讨论了无病平衡点和地方病平衡点的稳定性,给出了平衡点保持稳定的判别条件。最后通过数值仿真验证了理论分析的正确性。
This paper studied the local stability and global stability of the equilibrium point for a class of fractional order SEIS infectious disease model. Firstly, the existence and uniqueness of the equilibrium point were proved. Secondly, the stabilities of the disease-free equilibrium point and the endemic disease equilibrium point were discussed by using the eigenvalue method and the criterion for the equilibrium point stability was given. Finally, the correctness of the theoretical analysis was verified by numerical simulation.
作者
谢迎康
王震
XIE Yingkang;WANG Zhen(College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处
《山东科技大学学报(自然科学版)》
CAS
北大核心
2018年第6期65-73,共9页
Journal of Shandong University of Science and Technology(Natural Science)
基金
国家自然科学基金项目(61573008
61473178)
关键词
传染病模型
分数阶
平衡点
稳定性
SEIS模型
infectious disease model
fractional order
equilibrium point
stability
SEIS model