期刊文献+

一类分数阶SEIS模型的稳定性分析 被引量:1

Stability Analysis for A Class of Fractional Order SEIS Model
下载PDF
导出
摘要 针对一类分数阶SEIS型传染病模型研究了该模型平衡点的局部稳定性和全局稳定性问题。证明了该模型平衡点的存在性和唯一性,并通过特征根方法讨论了无病平衡点和地方病平衡点的稳定性,给出了平衡点保持稳定的判别条件。最后通过数值仿真验证了理论分析的正确性。 This paper studied the local stability and global stability of the equilibrium point for a class of fractional order SEIS infectious disease model. Firstly, the existence and uniqueness of the equilibrium point were proved. Secondly, the stabilities of the disease-free equilibrium point and the endemic disease equilibrium point were discussed by using the eigenvalue method and the criterion for the equilibrium point stability was given. Finally, the correctness of the theoretical analysis was verified by numerical simulation.
作者 谢迎康 王震 XIE Yingkang;WANG Zhen(College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处 《山东科技大学学报(自然科学版)》 CAS 北大核心 2018年第6期65-73,共9页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61573008 61473178)
关键词 传染病模型 分数阶 平衡点 稳定性 SEIS模型 infectious disease model fractional order equilibrium point stability SEIS model
  • 相关文献

参考文献2

二级参考文献30

  • 1Nicole Heymans,Igor Podlubny.Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[J].Rheologica Acta.2006(5)
  • 2.
  • 3Montseny G.Diffusive representation of pseudo- differential time-operators[].ESAIM: Proceedings Fractional Differential Systems: Models Methods and Applications.1998
  • 4Kilbas A,Srivastava M,Trujillo J.Theory and applications of fractional differential equations[]..2006
  • 5Ahmed E E,el-Sayed A M A,el-Saka H A A.Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models[].Journal of Mathematical Analysis and Applications.2007
  • 6Matignon D.Stability results for fractional dier- ential equations with applications to control pro- cessing[].Computational Engineering in Systems and Application Multiconference IMACS IEEE-SMC.1996
  • 7Miller K S,,Ross B.An introduction to the fractional calculus and fractional differential equations[]..1993
  • 8Skaar,S. B.,Michel,A. N.,Miller,R. K.Stability of viscoelastic control systems[].IEEE Transactions on Automatic Control.1988
  • 9Ichise,M.,Nagayanagi,Y.,Kojima,T.An analog simulation of non integer order transfer functions for analysis of electrode processes[].Journal of Electroanalytical Chemistry Interfacial Electrochemistry.1971
  • 10Sun,H.H.,Abdelwahab,A.A.,Onaral,B.Linear approximation of transfer function with a pole of fractional power[].IEEE Trans Autom Con.1984

共引文献10

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部