期刊文献+

一类混合不确定系统的对偶自适应控制

Dual Adaptive Control for a Class of Mixed Uncertainty Systems
下载PDF
导出
摘要 在具有未知常数且状态能够精确测量的线性二次型高斯(linear quadratic Gaussian, LQG)问题中,因为参数估计和控制增益存在耦合,所以分离定理不再成立,导致控制律无法获得解析解.为此,提出了一种对偶自适应控制方法,首先建立参数估计的状态空间模型,利用滚动动态规划获得控制增益,用Kalman滤波对未知参数进行估计,解决了估计增益与控制增益相互耦合的问题,进而设计了具有次优性质的控制器.该控制器既能优化控制目标,又能对未知参数进行有效学习.仿真结果表明了所提控制算法的有效性. For the linear quadratic Gaussian (LQG) problems with unknown constant parameters and accurately measurable state, the separation theorem is no longer valid due to the coupling between parameters estimation and control gain, which lead to the failure to the analytical solution of the control law. The dual adaptive control method is proposed in this paper, where a state space model of parameters estimation is established, control gain is obtained by rolling dynamic programming, Kalman filter is used to estimate unknown parameters, the present difficulties about the mutual coupling between estimated gain and control gain are overcome, and the controller with suboptimal characteristics is designed. On the one hand, the controller can optimize the control target, on the other hand, it can also learn unknown parameters effectively. The simulation results show the effectiveness of the proposed control algorithm.
作者 尚婷 钱富才 刘磊 胡绍林 SHANG Ting;QIAN Fu-cai;LIU Lei;HU Shao-lin(School of Automation and Information Engineering,Xi'an University of Technology,Xi'an 710048,China;Autonomous Systems and Intelligent Control International Joint Research Xi'an Technological University,Xi'an 710021,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2018年第6期1022-1030,共9页 Journal of Applied Sciences
基金 国家自然科学基金(No.61773016,No.61473222) 陕西省科技攻关项目基金(No.2016GY-108)资助
关键词 滚动动态规划 KALMAN滤波 对偶自适应控制 线性二次型高斯问题 rolling dynamic programming Kalman filter dual adaptive control linearquadratic Gaussian (LQG) problem
  • 相关文献

参考文献4

二级参考文献16

  • 1DuanLi,FucaiQian,PeilinFu.Research on Dual Control[J].自动化学报,2005,31(1):32-42. 被引量:14
  • 2ASTROM K J. Introduction to Stochastic Control Theory [M]. New York: Cademic Press, 1970.
  • 3QIAN F C, GAO J J, LID. Complete statistical characterization of discrete-Time LQG and cumulant control [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2110 - 2115.
  • 4LI D, QIAN F C, FU P L. Optimal nominal dual control for discrete- time LQG problem with unknown parameters [J]. Automatica, 2008, 44(1): 119 - 127.
  • 5LI D, QIAN F C, GAO J J. Performance-first control for discrete- Time LQG problems [J]. IEEE Transactions on Automatic Control, 2009, 54(9): 2225 - 2230.
  • 6FORBES M G, GUAY M, FORBES J F. Control design for first-order processes: Shaping the probability density of the process state [J]. Journal of Process Control, 2004, 14(4): 399 - 410.
  • 7KARNY M. Towards fully probabilistic control design [J]. Automat- ica, 1996, 32(12): 1719 - 1722.
  • 8PAOLA M D, RICCIARDI G, VASTA M. A method for the proba- bilistic analysis of nonlinear systems [J]. Probabilistic Engineering Mechanics, 1995, 10(1): 1 - 10.
  • 9GUO L, WANG H. Stochastic Distribution Control System Design: A Convex Optimization Approach [M]. London: Springer, 2010.
  • 10GUO L, WANG H. PID controller design for output PDFs of stochas- tic systems using linear matrix inequalities [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2005, 35(1): 65 -71.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部