期刊文献+

极限集中关于无切线段的分析

下载PDF
导出
摘要 通过对自治系统轨线极限集和自治系统无切线段的分析,得到轨线与该轨线极限集中点的关系。为了寻找轨线与此极限集中任意点的关系,首先根据极限集具体情况(极限集中是否只有奇点),将所研究问题划分为两种情况进行讨论。根据轨线是否经过该轨线极限集,找到在每一种情况下轨线或者属于极限集或者无限趋近于极限集中的点。对轨线极限集含有常点的轨线而言,经过该轨线极限集任意常点,必然存在自治系统一条无切线段或者与该轨线有可列个交点或者轨线经过极限集的常点。 By analyzing the limit set of autonomous system trajectories and the non tangent segment of autonomous system,the relationship between the trajectory and the limit point of the trajectory is obtained.ln order to find the relationship between the trajectories and the limit points,first of all,according to the specific conditions of the limit set (is there only a singularity- in the limit eoneentration),the research problems are divided into two eases. According to whether the track line passes the limit set of the trajeetory,we found the track line either belong to a limit set or infinitely close to a point of the limit set. Further discussion is concerned with the trajectories of the limit set with constant points.Through the limit set of the trajectories arbitrary points,a regular point of an autonomous system that has a non tangent line segment or an intersection with the track or the track line passes the limit set.
出处 《科技视界》 2018年第27期127-129,165,共4页 Science & Technology Vision
基金 四川省科技厅项目(2016JY0067)
关键词 自治系统 轨线 极限集 Autonomous system Trajectory Linfit set
  • 相关文献

参考文献9

二级参考文献59

  • 1Jie-hua MAI~1 Tai-xiang SUN~(2+) ~1 Institute of Mathematics,Shantou University,Shantou 515063,China,~2 College of Mathematics and Information Sciences,Guangxi University,Nanning 530004,China.Non-wandering points and the depth for graph maps[J].Science China Mathematics,2007,50(12):1818-1824. 被引量:3
  • 2孙太祥,席鸿建,陈占和,张永平.图映射的吸引中心与拓扑熵[J].数学进展,2004,33(5):540-546. 被引量:4
  • 3李海洋,路玲霞.闭集格的极小集刻画[J].纺织高校基础科学学报,2007,20(2):118-121. 被引量:3
  • 4Bourgain J, Diestel J. Limited operators and strict cosingularity[J]. Math. Nachr., 1984,119:55-58.
  • 5Galindo P. Polynomials and limited sets[J]. Proceedings of the American Mathematical Society, 1996,124:5.
  • 6Josefson B. A Banach space containing non-trivial limited sets but no non-trivial bounding sets[J]. Israel Journal of Mathematics, 1990,71:321-327.
  • 7Schlumprecht T. A limited set which is not bounding[J]. Proceedings of the Royal Irish Academy, 1990,90A:125- 129.
  • 8Schlumprecht T. Limited Set in Banach Spaces[D]. Munich: ph.D. Thesis Munich, 1988.
  • 9Schlumprecht T. Funtional Analysis:Limited Sets in Injective Tensor Products[M]. New York: Springer- Verlag, 1991.
  • 10钟怀杰.Banach空间结构与算子理想[M]北京:科学出版社,2005.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部