摘要
目的:探讨CT图像纹理分析对胰腺神经内分泌肿瘤(Pancreatic neuroendocrine neoplasm,PNEN)病理分级的诊断价值。方法:回顾性分析109例经手术或病理活检确诊为胰腺神经内分泌肿瘤患者的CT动脉期及门脉期图像,ITK-Snap软件手动勾画感兴趣区(ROI),A.K.软件提取ROI纹理特征,采用最小绝对收缩与选择算子(The least absolute shrinkage and selection operator,LASSO)降维运算获取纹理特征及其受试者工作特征曲线下面积(AUROC)。结果:筛选出动脉期纹理特征共5个,分别为熵(GLCMEntropy_AllDirection_offset7_SD)、峰度(kurtosis)、肿瘤在三维空间内的最大直径(Maximum 3D diameter)、变换后形成的正态曲线内0.025分位处的数值(Quantile0.025)及肿瘤表面积与体积的比值(Surface volume ratio),其AUROC分别为0.715、0.529、0.724、0.672及0.698,门静脉期特征2个,为肿瘤在三维空间内的最大直径及肿瘤表面积与体积的比值,其AUROC分别为0.722及0.703。结论:CT图像纹理分析可用于判断PNEN的病理分级。
Objective: To evaluate the accuracy of the texture analysis to determinate the pathological grades of pancreatic neuroendocrine neoplasms(PNEN). Methods: 109 cases of pancreatic neuroendocrine neoplasms, confirmed by surgery or patho- logical biopsy, were retrospectively enrolled in our study. Both arterial phase and portal vein phase CT images of including patients were manual sketch the region of interest (ROI) by ITK Snap software. A.K. software was used for texture extraction, and R software with The least absolute shrinkage and selection operator (LASSO) was used for calculation. Results: In aterial phase, 5 texture features were selected, including maximum 3D diameter, kurtosis, GLCMEntropy_AllDirection_offsetT_SD, quantile0.025 and Surface volume ratio, with AUROC of 0.715, 0.529, 0.724, 0.672 and 0.698, respectively. In portal vein phase, 2 texture features were selected including maximum 3D diameter and surface volume ratio, with AUROC of 0.722 and 0.703, respectively. Conclusions: Texture analysis of CT images can be used to evaluate the pathological classification of PNEN.
作者
于浩鹏
李谋
张琳
杨成敏
张永嫦
宋彬
YU Hao-peng, L1 Mou, ZHANG Lin, YANG Cheng-min, ZHANG Yong-chang, SONG Bin(Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China)
出处
《中国临床医学影像杂志》
CAS
2018年第11期788-791,共4页
Journal of China Clinic Medical Imaging
关键词
癌
神经内分泌
胰腺肿瘤
体层摄影术
螺旋计算机
Carcinoma
neuroendocrine
Pancreatic neoplasms
Tomography
spiral computed