期刊文献+

基于粗糙集和SPSO的网络入侵检测方案 被引量:14

A Network Intrusion Detection Scheme Based on Rough Set and Simple Particle Swarm Optimization
下载PDF
导出
摘要 针对计算机网络中的安全性问题,提出一种基于粗糙集和简化粒子群优化(SPSO)的网络入侵检测方案。首先,利用粗糙集理论从入侵数据集中提取出分类效果较好的简约特征集。然后,利用训练数据训练BP神经网络分类器,并利用改进后的SPSO优化神经网络的权值和阈值参数。最后,以提取的特征为输入,利用优化后的BP神经网络进行网络入侵分类。在DARPA数据集上进行实验,结果表明该方案能够精确的检测U2R、R2L、DoS和PRB类网络攻击,整体分类准确率达到了87%。 For the security problem of the computer network, a network intrusion detection scheme based on rough set and simplified particle swarm optimization is proposed. Firstly, the rough set theory is used to extract the simple feature set with good classification effect from the intrusion data. Then, the training data is used to train the BP neural network classifier, and the weights and threshold parameters of the neural network are optimized by the improved SPSO algorithm. Finally, the extracted features are regarded as inputs of the optimized BP neural network, so as to realize the classification of network intrusion. Experiments on DARPA data sets show that the proposed scheme can accurately detect U2 R, R2 L, DoS and PRB attacks, and the overall classification accuracy rate reaches 87 %.
作者 朱亚东 ZHU Ya-dong(Information Center,Jiangsu Union Technical Institute,Nanjing Engineering Branch,Nanjing 211135,China)
出处 《控制工程》 CSCD 北大核心 2018年第11期2097-2101,共5页 Control Engineering of China
关键词 网络入侵检测 粗糙集理论 简化粒子群优化 BP神经网络 Network intrusion detection rough set theory simple particle swarm optimization BP neuralnetwork
  • 相关文献

参考文献4

二级参考文献32

  • 1田志宏,方滨兴,张宏莉.基于半轮询驱动的网络入侵检测单元的设计与实现[J].通信学报,2004,25(7):146-152. 被引量:5
  • 2孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 3叶明江,崔勇,徐恪,吴建平.基于有状态Bloom filter引擎的高速分组检测[J].软件学报,2007,18(1):117-126. 被引量:13
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5Lippmann R,Webster S, Stetson D. The effect of identifying vulnerabilities and patching software on the utility of network intrusion detection [C]//Proc of the 15th Int Symp on Recent Advances in Intrusion Detection. Berlin: Springer, 2002: 307-326.
  • 6Sommer R, Paxson V. Enhancing byte-level network intrusion detection signatures with context [C]//Proc of the 10th ACM Conf on Computer and Communications Security. New York: ACM, 2003:262-271.
  • 7Kruegel C, Robertson W. Alert verification: Determining the success of intrusion attempts [C]//Proc of the 1st Workshop on Detection of Intrusions and Malware Vulnerability Assessment (DIMVA). Berlin: Springer, 2004, 2622-2628.
  • 8Gula R. Correlating IDS Alerts with Vulnerability Information [M]. Englewoocl Cliffs, NJ: Prentice Hall, 2003.
  • 9Desai N. IDS Correlation of VA Data and IDS Alerts [M]. EnglewooeI Cliffs, NJ: Prentice Hall, 2005.
  • 10Nessus Vulnerability Scanner [EB/OL]. 2001. [2011-01-08]. http://www. ness-us.org.

共引文献202

同被引文献137

引证文献14

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部