期刊文献+

基于区域网格划分的SVM室内定位算法 被引量:3

SVM INDOOR POSITIONING ALGORITHM BASED ON REGIONAL MESHING
下载PDF
导出
摘要 随着城市化的快速发展,人们越来越多的时间处于室内,因此室内定位方法和系统的研究越来越得到关注。针对室内环境相对复杂造成的RSSI值波动大、定位响应不及时的问题,采用有效的预处理,兼顾定位速度和定位精度,提出一种基于区域网格划分的SVM定位算法。离线采集阶段进行SVM"位置指纹"模型训练。在线定位阶段,进行数据筛选和数据修正等预处理,再进行区域网格匹配。在K个区域网格内使用SVM分类器进行二分类,通过投票法确定移动终端的位置。实验结果表明,该定位算法在保证定位速度的前提下能够有效地提高定位精度。 With the rapid development of urbanization, people spend more time indoors, so the study of indoor positioning methods and systems is getting more attention. Aiming at the problem that RSSI value fluctuates greatly and positioning response was not timely due to the relatively complex indoor environment, an SVM positioning algorithm based on regional meshing was proposed by using effective pre-processing and considering the positioning speed and accuracy. In the offline acquisition stage, the algorithm performed SVM position fingerprint model training. In the online positioning stage, the algorithm performed pre-processing, such as data filtering and data modification, and matched region grids. SVM classifiers were used for two classifications in K region grids, and the position of mobile terminals was determined by voting method. Experimental results show that the proposed algorithm can effectively improve the positioning accuracy while ensuring the positioning speed.
作者 贾春阳 郭之超 Jia Chunyang;Guo Zhichao(Smart City College,Beijing Union University,Beijing 100101,China;State Key Laboratory of Software Development Environment,School of Computer Science and Engineering,Beihang University,Beijing 100191,China)
出处 《计算机应用与软件》 北大核心 2018年第12期148-153,178,共7页 Computer Applications and Software
关键词 室内定位 WI-FI 区域网格划分 SVM分类 Indoor positioning Wi-Fi Regional meshing SVM classification
  • 相关文献

参考文献5

二级参考文献58

  • 1邬向前,王宽全,张大鹏.一种用于掌纹识别的线特征表示和匹配方法(英文)[J].软件学报,2004,15(6):869-880. 被引量:28
  • 2[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 3[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 4[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 5[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 6[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 7[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 8[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.
  • 9[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435.
  • 10[10]L Wiskott,et al.Face recognition by elastic bunch graph matching [J].IEEE Trans.PAMI.1997,19(6) :775-779.

共引文献547

同被引文献18

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部