期刊文献+

基于图割算法的宫颈细胞分层次分割 被引量:3

HIERARCHICAL SEGMENTATION OF CERVICAL CELLS BASED ON GRAPH CUT ALGORITHM
下载PDF
导出
摘要 宫颈细胞分割在宫颈细胞形态学研究中是十分重要且具有挑战性的环节。提出一种基于图割的分层次高效分割宫颈细胞方法。对获取宫颈细胞图像进行灰度变化处理求得灰度直方图,根据直方图结合OTSU求解最佳分割阈值,根据最佳分割阈值对图像进行初次分割去除背景,得到单个细胞目标;而对粘连、重叠、较为复杂的细胞图像再利用图割算法进行二次分割获取单个目标细胞。实验结果表明,该算法不仅有较好的分割效果而且效率也很高。 Cervical cell division is an important and challenging part in the study of cervical cell morphology. This paper put forward a hierarchical efficient segmentation method for cervical cells based on graph cut. The gray scale histogram was obtained by processing the gray change of the cervical cell image. The optimal segmentation threshold was solved according to the histogram and OTSU. The image was firstly segmented according to the optimal segmentation threshold to remove the background, and a single cell target was obtained. The adhesive, overlapping and complex cell images were segmented twice by graph cut to obtain a single target cell. Experimental results show that the algorithm has good segmentation effect and high efficiency.
作者 于月娜 梁光明 刘任任 Yu Yuena;Liang Guangming;Liu Renren(School of Information Engineering,Xiangtan University,Xiangtan 411100,Hunan,China;School of Electronic Science and Engineering,National University of Defense Technology,Changsha 410000,Hunan,China)
出处 《计算机应用与软件》 北大核心 2018年第12期233-236,297,共5页 Computer Applications and Software
关键词 宫颈细胞 图割算法 直方图处理 OTSU求解 分割阈值 去除背景 Cervical cells Graph cut algorithm Histogram processing OTSU solution Segmentation threshold Remove background
  • 相关文献

参考文献2

二级参考文献91

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999.
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476.
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578.
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253.
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83.

共引文献145

同被引文献36

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部