摘要
在剩余格中定义了一类特殊的素(p)滤子,讨论了它们的结构和性质.证明了该剩余格中的蕴涵运算可由这些特殊的素(p)滤子所确定,并且这些特殊的素(p)滤子的全体构成一个剩余格,它与原剩余格具有格蕴涵同构关系.当剩余格是MTL代数、IMTL代数、BL代数、MV代数或R0代数时,上述结论也成立.
A special kind of prime(p) filters are defined in a residual lattice,then their structures and properties are discussed.It is proved that the implication operation in the residual lattice is determined by these prime(p) filters,and all of these prime(p) filters compose a residual lattice,which is lattice implication isomorphic to the former residual lattice.The conclusion is suit for MTI. algebra,IMTL al gebra,BL algebra,MV algebra and R0 algebra.
作者
龚加安
崔宏志
吴洪博
GONG Jia-an;OUI Hong-zhi;WU Hong-bo(Shanxi Shangluo Vocation and Technical lnstitution,Shangluo 726000,China;College of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710062,China)
出处
《云南师范大学学报(自然科学版)》
2018年第6期26-30,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(11171196)
陕西省教育厅科学研究基金资助项目(17JK0962)
商洛职业技术学院2017年度重大课题资助项目(2017JXKT06)
关键词
剩余格
素(p)滤子
格蕴涵同构
Residual lattice
Prime(p) filters
I.attice implication isomorphic