期刊文献+

一种基于加权道路网络的拥堵区域划分方法

A Congestion Area Division Method Based on Weighted Road Network
下载PDF
导出
摘要 针对大多数拥堵评价方法只关注速度及占有率等交通数据特征而忽略路网拓扑结构的问题,本文利用道路的拓扑结构信息,构建以影响因子为权重的加权有向路网,结合路网的连边信息和路段的物理属性,设计了一种考虑节点上下游关系的拥堵评价指标,结合路口路段物理属性校准节点的交通状态后,提出一种新的拥堵区域划分算法,并对算法进行分析和实验验证。验证结果表明,该方法可根据影响因子矩阵找出路网中较为重要的路段,拥堵区域发现算法从路网中提取拥堵子网构成拥堵区域。本文提出的影响因子指标、密集度指标和度中心性指标为智能交通系统治理交通拥堵问题和制定决策提供了理论依据,具有一定的实际应用价值。 In view of the problem that most current congestion assessment methods only focus on the data characteristics and ignore the network topology structure, this paper uses the topological structure information of roads toconstruct the weighted directed road network with influence factor as weight. On the basis of the road network, a congestion evaluation index considering the relationship between upstream and downstream of nodes was designed based on the information of edges in the road network and the physical properties of the road section. After calibrating the traffic status of nodes according to the physical properties of the road section, a new congestion-area discovery algorithm was proposed. Through the analysis and experimental verification of the algorithm, the results show that this method can find the important sections of the road network according to the influence factor matrix, and the congestion-area discovery algorithm extracts network congestion subnet constitute a congested area. Finally, the influence factor index, intensity index and centrality index proposed in this paper provide theoretical basis for ITS to solve traffic congestion problem and make decision which have certain practical application value.
作者 吴梅 邵峰晶 孙仁诚 WU Mei;SHAO Fengjing;SUN Rencheng(College of Computer Science and Technology,Qingdao University,Qingdao 266071,China)
出处 《青岛大学学报(工程技术版)》 CAS 2018年第4期9-15,共7页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(41476101)
关键词 拥堵区域 复杂网络 节点相似性 聚类算法 congestion area complex network node similarity clustering algorithm
  • 相关文献

参考文献7

二级参考文献53

  • 1史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71. 被引量:49
  • 2张晨,张宁.上海市公交网络拓扑性质研究[J].上海理工大学学报,2006,28(5):489-494. 被引量:33
  • 3单国慧,程涛,杨培章,庞园园.运动目标轨迹的时空数据模型研究[J].测绘科学,2007,32(3):33-35. 被引量:2
  • 4何巍南.基于浮动车数据的城市常发性交通拥堵时空分布特征研究[D].北京:北京交通大学交通运输学院,2012.
  • 5Xin Feifei, Chen Xiaohong, Lin Hangfei. Study on space- time distribution characteristics of floating car data based on large samples [C] //Proc of 2010 Int Conf on Optoelectronics and Image Processing. Piscataway, NJ: IEEE, 2010: 449- 452.
  • 6Tang Luan, Zheng Yu, Xie Xing, ct al. Retrieving k-nearest neighboring trajectories by a set of point locations [C] //Proc of the 12th Int Syrup on Spatial and Temporal Databases. Berlin: Springer, 2011:223-241.
  • 7Yuan Jing, Zheng Yu, Zhang Chengyang, et al. T-drive: Driving directions based on taxi trajectories [C] //Proc of the 18th SIGSPATIAL Int Cone on Advances in Geographic Information Systems. New York: ACM, 2010:99-108.
  • 8Liu Kuien, Deng Ke, Ding Zhingming, et al. MOIR/MT; Monitoring large scale road network traffic in real-time[J]. Proc of the VLDB Endowment, 2009, 2(2): 1538-1541.
  • 9GatingRH,SchneiderM.移动对象数据库[M].金培权,岳丽华,译.北京:高等教育出版社,2009.
  • 10Meng Xiaofeng, Chen Jidong. Moving Objects Management: Models, Techniques and Applications EM:. Beijing: Tsinghua University Press, 2010.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部