期刊文献+

面向化学资源文本的命名实体识别 被引量:6

Named Entity Recognition for Chemical Resource Text
下载PDF
导出
摘要 针对化学资源文本中的命名实体,提出一种适合于化学资源文本的命名实体识别方法,旨在将化学物质、属性、参数、量值4种命名实体进行识别.该方法根据化学资源文本的语言规律及特点,建立BLSTM-CRF模型对命名实体进行初步识别,并使用基于词典与规则相结合的方法对识别结果进行校正.实验结果表明,该方法在化学资源文本中能够较好地完成命名实体识别任务,在测试语料上的F1值最高能达到94.26%. A method was proposed for the recognition of four kinds of named entities, chemical substances, attributes, parameters, and values in the chemical resource text. The language rules and characteristics of the chemical resource text were used for reference. Firstly, BLSTM-CRF model was established to the recognition of named entity. Then the algorithm, which based on the combination of the dictionary and rule, was used to correct and improve the recognition results. The result of experiments showed that the algorithm was able to complete the named entity recognition task in the chemical resource text well, and the maximum F1-Measure on the test sets could increase to 94.26%.
作者 马建红 王立芹 姚爽 MA Jianhong;WANG Liqin;YAO Shuang(School of Computer Science and Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2018年第4期14-20,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 中国科学技术咨询服务中心计算机辅助创新设计公共服务平台建设服务采购项目(HSZT2015FD/254)
关键词 化学资源文本 命名实体识别 双向长短时记忆网络 条件随机场 规则 the chemical resource texts named entity recognition BLSTM CRF rule
  • 相关文献

参考文献3

二级参考文献30

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:249
  • 2Grishman R, Sundhiem B. Design of the MUC -6 Evaluation[ C]. In : Proceedings of the 6th Message Understanding Conference. NJ : Association for Computational Linguistics, 1995 : 1 - 11.
  • 3Chen H H, Ding Y W, Tsai S C, et al. Description of the NTU System Used for MET - 2 [ C ]. In : Proceedings of the 7th Message Understanding Conference. 1998.
  • 4Black W J, Rinaldi F, Mowatt D. Facile: Description of the NE System Used For MUC - 7 [ C ]. In : Proceedings of the 7th Message Understanding Conference. 1998.
  • 5Sun J, Gao J F, Zhang L, et al. Chinese Named Entity Identification Using Class Based Language Model [ C ]. In : Proceedings of the 19th International Conference on Computational Linguistics. N J: Association for Computational Linguistics, 2002 : 1 - 7.
  • 6Zhou G D, Su J. Named Entity Recognition Using an HMM Based Chunk Tagger[ C ]. In: Proceedings of the 40th Annual Meeting of the ACL. NJ : Association for Computational Linguistics, 2002 : 473 - 480.
  • 7Ramaparkhi A. A Simple Introduction to Maximum Entropy Models for Natural Language Processing [ R ]. Institute for Research in Cognitive Science, University of Pennsylvania, 1997.
  • 8Krauthammer M, Rzhetsky A, Morozov P, et al. Using BLAST for Identifying Gene and Protein Names in Journal Articles [J]. Gene, 2000, 259( 1 ) :245 -252.
  • 9Klinger R, Kolarik C, Fluck J, et al. Detection of IUPAC and IUPAC - like Chemical Names [ J ]. Bioinformatics, 2008, 24 ( 13 ) : 268 - 276.
  • 10Ying He,Mehmet Kayaalp.Biological Entity Recognition with Con-ditional Random Fields. AMIA Annu Symp Proc . 2008

共引文献18

同被引文献42

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部