期刊文献+

基于GA-SVM的高压输电线路弧垂预测模型 被引量:5

High Voltage Transmission Line Sag Prediction Model Based on GA-SVM
下载PDF
导出
摘要 导线弧垂是反映输电线路运行状态的重要参数之一,为了预知和预警高压输电线路弧垂的变化,提出了一种基于遗传算法(genetic algorithm, GA)特征自适应赋权的支持向量机(support vector machine, SVM),预测输电线路弧垂的方法(GA-SVM).该方法主要分为两个阶段,首先使用GA对实验数据自适应赋权,以突出重要属性,抑制冗余或次要属性,然后使用SVM预测输电线路弧垂.实验结果表明,该方法在预测输电线路弧垂方面是可行有效的,并且优于贝叶斯(Bayes)算法、K-最近邻算法(KNN)、决策树算法和BPNN神经网络算法. The wire sag was one of the important parameters of transmission lines. In order to predict the line sag variation, a support vector machine model based on genetic algorithm(GA-SVM) was proposed. The method was divided into two stages. Firstly, GA algorithm was applied to adaptively weight the features to highlight the important attributes and suppress the redundant or secondary attributes. Then, SVM algorithm was used to predict the line sag. The empirical analysis showed that the proposed method was feasible and effective. It was superior to Bayes algorithm, K-Nearest Neighbor algorithm(KNN), Decision Tree algorithm, and BPNN algorithm.
作者 姬波 杨文东 张驰 卢红星 安致嫄 JI Bo;YANG Wendong;ZHANG Chi;LU Hongxing;AN Zhiyuan(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;The Depariment of Communications Operation,State Grid Henan Electric Power Company Information Communication Company,Zhengzhou 450000,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2018年第4期94-100,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61502434) 河南省科技攻关计划项目(162102210156)
关键词 输电线路 弧垂 遗传算法 特征赋权 支持向量机 transmission line sag genetic algorithm teature weighting support vector machine
  • 相关文献

参考文献8

二级参考文献82

共引文献114

同被引文献80

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部