期刊文献+

巴拿赫空间中演化算子非一致多项式三分性的充要条件

Necessary and Sufficient Criteria for the Nonuniform Polynomial Trichotomy of Evolution Operators in Banach Spaces
原文传递
导出
摘要 分别利用两个和四个投影族给出了巴拿赫空间中演化算子非一致多项式三分性的充要条件. The aim of this paper is to give necessary and sufficient conditions for the nonuniform polynomial trichotomy of evolution operators in Banach spaces by means of two projection families and four projection families, respectively.
作者 岳田 刘开拓 徐鹏 YUE Tian;LIU Kai-tuo;XU Peng(School of Science,Hubei University of Automotive Technology,Shiyan 442002,China;School of Mathematics and Statistics,Central South University,Changsha 410083,China)
出处 《数学的实践与认识》 北大核心 2018年第21期171-175,共5页 Mathematics in Practice and Theory
基金 湖北省教育厅科学技术研究项目(B2018067)
关键词 演化算子 非一致多项式三分性 投影族 充要条件 evolution operator nonuniform polynomial trichotomy projection family nec-essary and sufficient criteria
  • 相关文献

参考文献4

二级参考文献62

  • 1ALONSO A I, HONG Jialin, OBAYA R. Exponential dichotomy and trichotomy for difference equations[ J]. Computers and Mathematics with Applications, 1999, 38( 1 ) :4149.
  • 2JIANG Yongxin. Robustness of a nonuniform trichotomy in Banach spaces [J]. Electronic Journal of Differential Equa- tions, 2012, 2012(154) :1-11.
  • 3LIU Jinghuai, SONG Xiaoqiu. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equtions [ J ]. Journal of Functional Analysis, 2010, 258 ( 1 ) : 196-207.
  • 4LIU.Jinghuai, SONG Xiaoqiu, ZHANG Pingli. Weighted pseudo almost periodic mild solutions of semilinear evolution equa- tions with nonlocal conditions[ J]. Applied Mathematics and Computation, 2009, 215(5) :1647-1652.
  • 5BARUTIA M G, CEAUSU T, SEIMEANU N. On uniform exponential dichotomy of evolution operators [ J ]. Seria Matemati- ca Informatica, 2012, L(2) :3-14.
  • 6MEGAN M, CEAUSU T, RAMNEANTU M L. Polynomial stability of evolution operators in banach spaces E J ]. Opuscula Mathematica, 2011, 31 ( 2 ) :279-288.
  • 7RAMNEANTU M L, CEAUSU T, MEGAN M. On nonuniform polynomial dichotomy of evolution operators in Banach spaces [J]. International Journal of Pure and Applied Mathematics, 2012, 75(3) :305-318.
  • 8SACKER R J, SELL G R. Existence of dichotomies and invariant splittings of linear differential systems, III[ J]. Journal of Differential Equations, 1976, 22 (2) :497-522.
  • 9MEGAN M, STOICA C. On uniform exponential trichotomy of evolution operators in Banach spaces [ J]. Intergral Equations and Operator Theory, 2008, 60(4) :499-506.
  • 10RAMNEANTU M L. Uniform polynomial trichotomy of evolution operators in Banach spaces E J ]. Journal of Advanced Mathematical Studies, 2012, 5 (2) 101-106.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部