期刊文献+

基于人工智能推理引擎在微博数据挖掘中的应用分析 被引量:4

Analysis on Application of Artificial Intelligence Inference Engine in Micro-blog Data Mining
下载PDF
导出
摘要 面对庞大的微博用户群,用人性化的用户体验来吸引更多用户成为关键因素。将人工智能推理引擎应用到微博数据的搜索中,可以收集用户使用的关键词并即时向用户推荐感兴趣的信息。本文介绍了人工智能搜索引擎和微博数据的特点,讨论了人工智能推理引擎的系统结构形式。人工智能推理引擎将为用户上网带来全新的人性化体验。 Facing on the huge number of micro-blog user groups,it is a key factor to attract users that using the user experience enhances user experience.The artificial intelligence(AI)inference engine is applied to search micro-blog data.It can collect users' keywords and instantly recommend users interested information.This paper introduces the characteristics of AI search engine and micro-blog data,and discusses the system structure of AI reasoning engine.AI inference engine will bring new humanized experience to users' Internet.
作者 杨达贤 YANG Daxian(Xiamen Cloud End Information Technology Co.,Ltd.,Zhangzhou 361000)
出处 《微型电脑应用》 2018年第11期128-130,共3页 Microcomputer Applications
关键词 人工智能 引擎 微博 数据挖掘 AI Engine Micro blog Data mining
  • 相关文献

参考文献8

二级参考文献127

  • 1谭德坤,赵珑,吴润秀,孙辉.基于UDDI Registry的智能检索引擎的研究[J].计算机工程与设计,2007,28(4):858-861. 被引量:2
  • 2Semiocast , Twitter reaches half a billion accounts more than 140 million in the U. S [EB/OL]. (2012-07-30)[2013-07- 23]. http://semiocast. com/publications/2012_07 _30_ Twitter_ reaches_halCa_billion_accounts_140m_in_the_ US.
  • 3Kwak H, Lee C, Park H, et al. What is Twitter, A social network or a news media [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 591-600.
  • 4Comscore. Mobile driving majority of growth for leading EU5 social networks [EB/OLJ. (2012-05-18) [2013-07- 23]. http://www.comscoredatamine.com/2012/05/mobile_ driving , majority _ f _ growth _ for _ leading _ eu5 _ social _ networks.
  • 5Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 851-860.
  • 6Popescu A M. Pennacchiotti M. Detecting controversial events from Twitter [C] !!Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM·10). New York: ACM. 2010: 1873-1876.
  • 7Weng J. Lee B S. Event detection in Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (ICWSM'l1). Menlo Park. CA: AAAI. 2011: 401-408.
  • 8Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (lCWSM'l1). Menlo Park. CA: AAAI. 2011: 438-441.
  • 9Ritter A, Mausam B. Etzioni O. et al. Open domain event extraction from Twitter [C] //Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD'12). New York: ACM. 2012: 1104-1112.
  • 10Lin J, Snow R, Morgan W. Smoothing techniques for adaptive online language models: Topic tracking in Tweet streams [C] //Proc of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD'll). New York: ACM, 2011: 422-429.

共引文献144

同被引文献44

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部